
Client software design

Stefan D. Bruda

CS 464/564, Fall 2023

A TCP CLIENT

1 Get the IP address and port number of the peer
2 Allocate a socket
3 Choose a local IP address
4 Allow TCP to choose an arbitrary, unused port number
5 Connect the socket to the server
6 Communicate with the server

Exchange messages
Often the client sends requests and the server replies, but this is not always
the case
The message exchange happens according to the application-level protocol

7 Close connection

Client software design (S. D. Bruda) CS 464/564, Fall 2023 1 / 14

PEER IDENTIFICATION

Depending on the actual application, the IP address of the peer (i.e.,
server) can be specified in more than one ways, including:

Hardcoded (rarely)
We specify it directly as an integer

As command-line argument (read from configuration file, etc.)
We use gethostbyname to get the actual address (i.e., number)

Use a separate protocol (broadcast or multicast) to find a server

Ports can also be specified in many ways, including:
It is a well-known port

We use getservbyname to obtain the actual port number
Hardcoded

Possibly suitable for custom client-server applications
As command-line argument (read from configuration file, etc.)

Especially useful for parameterized clients
telnet linux.ubishops.ca 22

my-client linux.ubishops.ca ssh

Client software design (S. D. Bruda) CS 464/564, Fall 2023 2 / 14

ALLOCATE A SOCKET

We need to specify at allocation time:
The protocol family
The socket type (TCP for the time being)
#include <sys/types.h>

#include <sys/socket.h>

int sd = socket(PF_INET, SOCK_STREAM, 0);

We end up with a socket descriptor

Client software design (S. D. Bruda) CS 464/564, Fall 2023 3 / 14

CHOOSING A LOCAL IP ADDRESS

Why do we need the local IP address?
Because a connection is specified by two endpoints

Why is it a problem to choose a local IP address?
Because a machine might have multiple adresses

10.0.1.2

(en1)

10.0.0.1

(br0)

216.95.151.69

(ppp0)

Internet

The appropriate address must be chosen so that IP is able to route packets
in the right direction
Choosing the right IP address is done after a dialogue with IP
The system call connect does it for us

Client software design (S. D. Bruda) CS 464/564, Fall 2023 4 / 14

CHOOSE A PORT

We must specify a local port number for the same reasons we have to
specify a local address
The choice of port number does not matter as long as:

It does not conflict with the port assigned to a well-know service
It is not in use by another process

We could try at random until we get a free port. . .
. . . However, the system keeps track of port usage anyway, so this would be
overkill
Thus the port number choice is again taken care of by the call to connect

Client software design (S. D. Bruda) CS 464/564, Fall 2023 5 / 14

CONNECT TO THE SERVER

In all, we obtain the local coordinates (IP address, port) and we connect
in one step:
int connect(int sockfd, struct sockaddr *serv_addr,

socklen_t addrlen);

Something like this:
struct sockaddr_in sin;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));

if (rc < 0) {

perror("connect");

exit(1);

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 6 / 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL) return err_host;
sin.sin_addr=(unsigned int)hinfo->h_addr;

sin.sin_port = port;

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 7 / 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL) return err_host;
sin.sin_addr=(unsigned int)hinfo->h_addr; // only if you are lucky

sin.sin_port = port; // only if you are lucky

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 8 / 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL) return err_host;
sin.sin_addr=(unsigned int)htonl(hinfo->h_addr); // assumes a bit too much

sin.sin_port = (unsigned short)htons(port);

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 9 / 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL) return err_host;
memcpy(&sin.sin_addr, hinfo->h_addr, hinfo->h_length);

sin.sin_port = (unsigned short)htons(port);

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 10 / 14

COMMUNICATE WITH THE SERVER

We send data using send (or write)
We receive responses using recv (or read)

Note that the response could come in pieces, even if the server answers
back in large chunks
You should be prepared to accept data a few bytes at a time
const int ALEN = 128;

char* req = "some sort of request";

char ans[ALEN];

char* ans_ptr = ans;

int ans_to_go = ALEN, n = 0;

send(sd,req,strlen(req),0);

while ((n = recv(sd,ans_ptr,ans_to_go,0)) > 0) {

ans_ptr += n;

ans_to_go -= n;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 11 / 14

COMMUNICATE WITH THE SERVER (CONT’D)

We do not necessarily know how long is the response
The shape of the response varies according to the application-level
protocol and may be:

One line of text (terminated by ’\n’)
We use readline (or equivalent) to read the answer

One line of text determines what comes after it
Again, we use readline to read one line at a time, and then decide what to do
next based on what we just read

As much as the server cares to send, with no special end marker
We read until there is no more data
But how?

Client software design (S. D. Bruda) CS 464/564, Fall 2023 12 / 14

COMMUNICATE WITH THE SERVER (CONT’D)

We check whether we have any more data coming on our way
Communication is not instantaneous, so we have to give some time for
the data to arrive
const int recv_nodata = -2;

int recv_nonblock (int sd, char* buf, size_t max, int timeout) {

struct pollfd pollrec;

pollrec.fd = sd;

pollrec.events = POLLIN;

int polled = poll(&pollrec,1,timeout);

if (polled == 0) return recv_nodata;

if (polled == -1) return -1;

return recv(sd,buf,max,0);

}

Outcomes:
-2: no more data available within the given timeout

0: end of file (when the server closes connection on us)
n > 0: n characters have been read.

Client software design (S. D. Bruda) CS 464/564, Fall 2023 13 / 14

CLOSING THE CONNECTION

close closes the connection and destroys the socket
Sometimes we want to shut down communication in one direction only

Reason: the server receive a request and responds to it
But what does it do now with the connection?

If the client has in fact more requests, the connection should stay open
If this is the last request, the connection should be closed

A client (or server) can partially close a connection, to let the server know
that it is finished.
int err = shutdown(sd,SHUT_WR);

The server (client) will then receive and end of file

The second argument of shutdown can be
SHUT_RD (0): further receives will be disallowed
SHUT_WR (1): further sends will be disallowed
SHUT_RDWR (2): neither receives, nor sends will be allowed

Client software design (S. D. Bruda) CS 464/564, Fall 2023 14 / 14

