
Server software design

Stefan D. Bruda

CS 464/564, Fall 2023

SERVERS

socket

bind

listen

accept

recv

send

close

iterative

connectionless

concurrent

connectionless

TCP

UDP

iterative

connection−oriented

concurrent

connection−oriented

We now consider TCP servers
Point-to-point communication
Reliable connection establishment and delivery
Flow-controlled transfer
Full duplex transfer
Stream paradigm (no message boundaries)

Server software design (S. D. Bruda) CS 464/564, Fall 2023 1 / 25

STATELESSNESS

While interacting with a client, servers may maintain state information
Reason: optimization

Consider a file server

File
foo

File
fad

File
bar

File
baz

File
bad

Server

bad

State information

Client i accesses

foo fad

bar baz

Client j accesses
Client j:

Client i:
File descriptor 1
File descriptor 2

File descriptor 3
File descriptor 4
File descriptor 5

Useful to keep state information because opening and (especially) seeking
may be expensive

Disadvantage: reduced robustness

Server software design (S. D. Bruda) CS 464/564, Fall 2023 2 / 25

STATELESSNESS (CONT’D)

Issues in stateful servers:
Problems with failure of machines or the network

What to do if the server crashes and comes up again? (state information is
lost)
What to do with the state information of a client that crashes and comes
back up? (state information is not in sync)
What to do with state information for clients that crashed for good? (wastes
resources ad infinitum)

Management and optimization of state information
We could keep files open even when clients no longer use it, in the hope that
another client will access the same file
However, suppose we run out of space in the descriptor table so we needs
to close files; which ones do we close?
We may thus spend more time optimizing the state information than we save
by keeping it (thrashing)

Server software design (S. D. Bruda) CS 464/564, Fall 2023 3 / 25



ITERATIVE SERVERS

1 create a master socket
2 bind the socket to a known address

(IP address + port number)
3 place the socket in passive mode
4 repeat forever:

1 accept the next connection request from
the socket and create a new slave socket
s for the connection.

2 read a request from the client (through s)
3 serve the request and reply to the client

(through s)
4 if finished with the client, close the socket

s (civilized servers shut down s first!);
otherwise, repeat from 2

accepthandle

client

slave

socket
master

socket

co
n
n
e
ct

Client

Server

c
o
m

m
u
n
ic

a
te

a
cce

p
te

d

create

Server software design (S. D. Bruda) CS 464/564, Fall 2023 4 / 25

BINDING THE SOCKET

We specify the IP address and the port number using the structure
sockaddr_in

Yes, but what address do we provide?

10.0.1.2

(en1)

10.0.0.1

(br0)

216.95.151.69

(ppp0)

127.0.0.1

(lo)

127.0.0.1

(lo0)

Internet

Many times INADDR_ANY will do
This denotes a “wildcard” that matches all the IP addresses of the given host

Server software design (S. D. Bruda) CS 464/564, Fall 2023 5 / 25

THE PROBLEM WITH ITERATIVE SERVERS (AND A

SOLUTION)

If two clients connect quasi-simultaneously, one of them will have to wait
untill the other closes its connection

This could be a long wait. . .
Most of the time we therefore need some form of concurrency (however
fake), even if the server itself is iterative:

1 create, bind and place in passive mode the
master socket

2 repeat forever:
1 from all the open sockets, select a socket s

that has data available
2 if s is the master socket, then

1 accept the next connection request from the
socket and create a new slave socket for the
connection

3 otherwise,
1 read a request from s
2 serve the request and reply
3 if finished with the respecive client, close s

n
e

w

c
lie

n
tsconnect

requests

h
a

s
 s

o
m

e
th

in
g

 to
 s

a
y

re
s
p

o
n

d
s
 to

 a
 s

o
c
k
e

t th
a

t

c
lie

n
ts

 b
e

in
g

 s
e

rv
e

d

S
e

rv
e

r

master

c
o

m
m

u
n

ic
a

te

Server software design (S. D. Bruda) CS 464/564, Fall 2023 6 / 25

THE PROBLEM WITH APPARENT CONCURRENCY:
SERVER DEADLOCK

Apparent concurrency is prone to server deadlock
deadlock happens when a program has to wait for an event to proceed
further, but that event never happens

Assume that a misbehaved client connects but sends no request
The server calls recv or read but it never receives data
Thus, it never polls the other sockets again, and the whole server becomes
deadlocked

True concurrency solves this, as the only locked process is the process
serving the misbehaved client
Notice however that this is not panaceum for the deadlock problem (so be
aware of it even if you write a concurrent server)

E.g., a malicious client can send requests but never read the responses
Eventually, the TCP buffers will fill up
Since TCP provides flow control, no new data is transmitted

In general, when the process does a system call and the system cannot
satisfy the request, that process will block

Server software design (S. D. Bruda) CS 464/564, Fall 2023 7 / 25



(TRULY) CONCURRENT SERVERS

Apparent concurrency is certainly possible, efficient, but full of pitfalls
But then we do not need to fake concurrency since it is offered by the
system anyway

1 create, bind and place in passive
mode the master socket

2 repeat forever:
1 accept the next connection request

from the socket and create a new
slave socket s for the connection.

2 fork
3 if children process then

1 close master socket
2 read a request from the client
3 serve the request and reply
4 if finished with the client, close s and

terminate; otherwise, repeat from 2
4 otherwise (i.e., if parent process),

1 close slave socket

connect
requests

c
lie

n
ts

 b
e
in

g
 s

e
rv

e
d

Parent

process

Child

process

Child

process

Child

process

n
e
w

c
lie

n
ts

master

c
o
m

m
u
n
ic

a
te

Server software design (S. D. Bruda) CS 464/564, Fall 2023 8 / 25

CONCURRENT SERVERS (CONT’D)

Iterative server:
loop

listen for clients
thena client requests connectionif

handle client
terminate

forever

Concurrent server:
loop

forever

listen for clients
a client requests connectionif

child processif

fork

handle client
terminate

then

then

Problem: The new processes we create will not terminate completely
(“zombie processes”)

In a server, it is crucial to clean them up
A zombie process dies for good when its parent executes waitpid on them
When a child process terminates, it sends a SIGCHLD signal to its parent
So we can create a function zombie_reaper that fires up whenever a
SIGCHLD signal is received:

We also install our function as sig-
nal handler (before the call to fork):
signal(SIGCHLD,zombie_reaper);

void zombie_reaper (int sig) {

int status;

while (waitpid(-1,&status,

WNOHANG) >= 0);

}

Server software design (S. D. Bruda) CS 464/564, Fall 2023 9 / 25

INTERPROCESS COMMUNICATION

Processes can send signals to each other
A signal is just an int

It is sent automatically by the system in some cases (e.g., SIGCHLD to the
parent when the child terminates)
But you can also send signals from your code (the meaning of most signals
is defined by the system, but SIGUSR1 and SIGUSR2 are user-defined)
For a description of available signals, see man -S7 signal

To send a signal, use the function int kill(pid_t pid, int sig);
(see man -S2 kill) where pid is the process id of some process, or

0 to send the signal to all the processes in the process group
-1 to send the signal to all the processes except PID 1 (init)

To receive a signal, you should establish a signal handler in your program
by using the function signal (see man -S2 signal)

The signal handler fires assynchronously once for each received signal

Server software design (S. D. Bruda) CS 464/564, Fall 2023 10 / 25

WHEN SIGNALS ARE NOT ENOUGH

How do we send data from process to process?
Using the filesystem (slower)
Using pipes

#include <unistd.h>

int pipe(int filedes[2]);

filedes[1] is for writing stuff. . .
. . . which can then be retrieved from filedes[0]

Server software design (S. D. Bruda) CS 464/564, Fall 2023 11 / 25



PIPES AND THE UNIX PHILOSOPHY

Pipes and fork/execve are the most important tools in UNIX

They allow the implementation of a big chunk of the UNIX philosophy
(Doug McIlroy et. al.):
Write programs that do one thing and do it well

To do a new job, build afresh rather than complicate old programs by adding
new features
Each time we do something else we do it in a separate process. We can do
all of this because fork-ing is cheap

Write programs to work together
Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input
We thus couple two programs using pipes
Write programs to handle text streams, because this is a universal interface

Server software design (S. D. Bruda) CS 464/564, Fall 2023 12 / 25

THE UNIX PHILOSOPHY (CONT’D)

Rule of Modularity: Write simple parts connected by clean interfaces
Rule of Clarity: Clarity is better than cleverness
Rule of Composition: Design programs to be connected to other programs
Rule of Separation: Separate policy from mechanism; separate interfaces from engines
Rule of Simplicity: Design for simplicity; add complexity only where you must
Rule of Parsimony: Write a big program only when it is clear that nothing else will do
Rule of Transparency: Design for visibility to make inspection and debugging easier
Rule of Robustness: Robustness is the child of transparency and simplicity
Rule of Representation: Fold knowledge into data so program logic can be stupid and robust
Rule of Least Surprise: In interface design, always do the least surprising thing
Rule of Silence: When a program has nothing surprising to say, it should say nothing
Rule of Repair: When you must fail, fail noisily and as soon as possible
Rule of Economy: Programmer time is expensive; conserve it in preference to machine time
Rule of Generation: Avoid hand-hacking; write programs to write programs when you can
Rule of Optimization: Prototype before polishing. Get it working before you optimize it
Rule of Diversity: Distrust all claims for “one true way”
Rule of Extensibility: Design for the future, because it will be here sooner than you think

Server software design (S. D. Bruda) CS 464/564, Fall 2023 13 / 25

PROCESSES THAT ACCESS FILES

Scenario:
We have a concurrent server that accesses a file f
A server process wants to write a continuous block of data into f
It is quite possible that two processes write to f at the same time, ending up
with corrupted data

Solution: A process that wants to write to the file acquires first a (POSIX)
lock: With a file descriptor fd, we do: lockf(fd,F_LOCK,0);

If a file is already locked, lockf(fd,F_LOCK,0) blocks (or returns failure, see
the O_NONBLOCK flag of open)
It is also a good idea to see whether a file is locked: lockf(fd,F_TEST,0);
(returns -1 and errno is set to EAGAIN)
If a file is locked by other process, write will block until the lock is released
(beware of deadlocks!)
To unlock the file: lockf(fd,F_ULOCK,0);

Server software design (S. D. Bruda) CS 464/564, Fall 2023 14 / 25

FILE ACCESS (CONT’D)

The lock created by lockf is mandatory, and enforced by the kernel
The lock is however only for writing; a process can read from a locked file
without any problem
You can lock portions of files, by giving a non-zero third argument (the offset)
to lockf

To obtain more flexible locks, you should use fcntl

struct flock lock;

fcntl(fd,F_GETLK,&lock); // get the lock status in l_type (below)

fcntl(fd,F_SETLK,&lock); // tries to lock, returns -1 on failure

fcntl(fd,F_SETLKW,&lock); // tries to lock, wait as long as necessary

// (deadlock possible!)

The flock structure has the following fields:
l_type type of lock: F_RDLCK, F_WRLCK, or F_UNLCK (set by F_GETLK)
l_whence where l_start is relative to (like third argument of lseek)
l_start offset where the lock begins
l_len size of the locked area (zero means until EOF)
l_pid process holding the lock

Server software design (S. D. Bruda) CS 464/564, Fall 2023 15 / 25



CRITICAL REGIONS

In a multi-process setting, it is often the case that some piece of code
must be executed by one processor at a time

Such a piece of code is called a critical region

One way of mutual exclusion in critical regions is the use of lock files:
before entering a critical region, a process locks a given file
if the file is locked, the process blocks until the lock is released
once the critical region is exited, the process releases the lock

Server software design (S. D. Bruda) CS 464/564, Fall 2023 16 / 25

ENTERING A CRITICAL REGION

int enter_critical (int fd) {

struct flock lock_info;

lock_info.l_type = F_WRLCK;

lock_info.l_whence = SEEK_SET;

lock_info.l_start = lock_info.l_len = 0;

int status;

while ( (status = fcntl(fd,F_SETLKW,&lock_info)) == -1 &&

errno == EINTR ) {

// reconstruct lock_info:

lock_info.l_type = F_WRLCK;

lock_info.l_whence = SEEK_SET;

lock_info.l_start = lock_info.l_len = 0;

}

if (status == -1)

perror("enter_critical");

return status;

}

Server software design (S. D. Bruda) CS 464/564, Fall 2023 17 / 25

EXITING A CRITICAL REGION

int exit_critical (int fd) {

struct flock lock_info;

lock_info.l_type = F_UNLCK;

lock_info.l_whence = SEEK_SET;

lock_info.l_start = lock_info.l_len = 0;

int status;

while ( (status = fcntl(fd,F_SETLKW,&lock_info)) == -1 &&

errno == EINTR ) {

// reconstruct lock_info:

lock_info.l_type = F_UNLCK;

lock_info.l_whence = SEEK_SET;

lock_info.l_start = lock_info.l_len = 0;

}

if (status == -1)

perror("exit_critical");

return status;

}

Server software design (S. D. Bruda) CS 464/564, Fall 2023 18 / 25

CRITICAL REGIONS (CONT’D)

int main (int argc, char** argv) {
char lock1name[256], lock2name[256];
snprintf(lock1name,255,"/tmp/lock-%d-1", getpid());
snprintf(lock2name,255,"/tmp/lock-%d-2", getpid());
int lock1 = open(lock1name, O_WRONLY|O_CREAT|O_APPEND, S_IRWXU|S_IRWXG|S_IRWXO);
int lock2 = open(lock2name, O_WRONLY|O_CREAT|O_APPEND, S_IRWXU|S_IRWXG|S_IRWXO);

if (lock1 == -1 || lock2 == -1) {
perror("Cannot create locks");
return 1;

}

/* Do something involving two critical regions... */

// clean up
close(lock1);
close(lock2);
unlink(lock1name);
unlink(lock2name);

}

Server software design (S. D. Bruda) CS 464/564, Fall 2023 19 / 25



EXAMPLES

if(fork() == 0) {
if(fork() == 0) { // nephew = ‘process 1’

printf("Process 1 enters critical 1 (%d)\n",
enter_critical(lock1));

sleep(3);
printf("Process 1 exits critical 1 (%d)\n",

exit_critical(lock1));
}
else { // child = ‘process 2’

printf("Process 2 enters critical 1 (%d)\n",
enter_critical(lock1));

sleep(3);
printf("Process 2 exits critical 1 (%d)\n",

exit_critical(lock1));
}

}
else { // parent = ‘process 3’

printf("Process 3 enters critical 1 (%d)\n"
enter_critical(lock1));

sleep(3);
printf("Process 3 exits critical 1 (%d)\n",

exit_critical(lock1));
}

Process 3 enters
critical 1 (0).

Process 3 exits
critical 1 (0).

Process 1 enters
critical 1 (0).

Process 1 exits
critical 1 (0).

Process 2 enters
critical 1 (0).

Process 2 exits
critical 1 (0).

Server software design (S. D. Bruda) CS 464/564, Fall 2023 20 / 25

EXAMPLES (CONT’D)

if(fork() == 0) { // child = ‘process 1’
printf("Process 1 enters critical 1 (%d)\n",

enter_critical(lock1));
sleep(1);
printf("Process 1 enters critical 2 (%d)\n",

enter_critical(lock2));
sleep(3);
printf("Process 1 exits critical 2 (%d)\n",

exit_critical(lock2));
printf("Process 1 exits critical 1 (%d)\n",

exit_critical(lock1)); }
else { // parent = ‘process 2’

printf("Process 2 enters critical 2 (%d)\n",
enter_critical(lock2));

sleep(1);
printf("Process 2 enters critical 1 (%d)\n",

enter_critical(lock1));
sleep(3);
printf("Process 2 exits critical 2 (%d)\n",

exit_critical(lock2));
printf("Process 2 exits critical 1 (%d)\n",

exit_critical(lock1)); }

Process 2 enters
critical 2 (0).

Process 1 enters
critical 1 (0).

enter critical:
Resource deadlock
avoided

Process 2 enters
critical 1 (-1).

Process 1 enters
critical 2 (0).

Process 2 exits
critical 2 (0).

Process 2 exits
critical 1 (0).

Process 1 exits
critical 2 (0).

Process 1 exits
critical 1 (0).

Server software design (S. D. Bruda) CS 464/564, Fall 2023 21 / 25

FILE LOCKING IMPLEMENTATION

The theory is nice by the practice in messy. . .
On Linux lockf(3) is just a wrapper for fcntl(2); on other systems this
might not be the case (so don’t mix and match)
On BSD mandatory and advisory locking are aware of each other (so you
can mix and match at will), other systems might see things differently
A lock is mandatory iff the file is marked as a candidate for mandatory
locking by setting the group-setuid bit in its file mode but removing the
group-execute bit — an otherwise meaningless combination chosen so
as not to break existing user programs
Solaris, HP-UX reject all calls to open() for a file on which another
process has outstanding mandatory locks — direct contravention of the
System V standard (but not POSIX), which states that only calls to
open() with the O_TRUNC flag set should be rejected; Linux follow the
System V standard
Race conditions can still appear
Quote from the Linux kernel: I’m afraid that this is such an esoteric area
that the semantics described below are just as valid as any others, so
long as the main points seem to agree

Server software design (S. D. Bruda) CS 464/564, Fall 2023 22 / 25

FILE LOCKING IMPLEMENTATION (LINUX)
Mandatory locks can only be applied via the fcntl()/lockf() locking
interface = the System V/POSIX interface. BSD style locks using flock()

never result in a mandatory lock
If a process has locked a region of a file with a mandatory read lock, then
other processes are permitted to read from that region. If any of these
processes attempts to write to the region it will block until the lock is
released, unless the process has opened the file with the O_NONBLOCK

flag in which case the system call will return immediately with the error
status EAGAIN

If a process has locked a region of a file with a mandatory write lock, all
attempts to read or write to that region block until the lock is released,
unless a process has opened the file with the O_NONBLOCK flag in which
case the system call will return immediately with the error status EAGAIN

Calls to open() with O_TRUNC, or to creat(), on a existing file that has
any mandatory locks owned by other processes will be rejected with the
error status EAGAIN

Not even root can override a mandatory lock, so runaway processes can
wreak havoc if they lock crucial files!

Way around: remove the setgid bit (hard to do on a hung system)
Server software design (S. D. Bruda) CS 464/564, Fall 2023 23 / 25



THE PERILS OF POSIX LOCKS

POSIX locks (lockf) are mandatory and enforced by the kernel
There are times however in which they do not do what you want them to
do:

Contrary to the popular belief, the following program will not block on the
lock:

int fd = open("aaa", O_RDWR);

if (fork() == 0) {

lockf(fd,F_LOCK,0);

printf("child locked \"aaa\"...");

sleep(5);

printf(" done\n");

}

else {

sleep(1);

write(fd,"stuff",5);

printf("parent wrote into \"aaa\"\n");

}

POSIX locks are established at descriptor level and are thus inherited by
child processes
However, attempting to place a lock on an already locked descriptor will
positively block

Server software design (S. D. Bruda) CS 464/564, Fall 2023 24 / 25

ADVISORY LOCKS

Advisory locks (flock) look almost the same. . . but are only advisory
That is, any program may choose not to take them into account
Avoiding flock in favour of POSIX locks is probably a good idea

But then do take into consideration the issues related to your program
locking a crucial file and then hanging

Advisory locks are by the way inherited by a child process but not across
execve

Server software design (S. D. Bruda) CS 464/564, Fall 2023 25 / 25


