WRITING ACTUAL CODE FOR ACTUAL SERVERS

. : @ A (Unix) server is different from a normal program
Practical aspects of server design o In particular, a server does not interact with a user
@ It communicates instead with other programs over a network
o |t also spawns threads/processes (which are not under immediate user
control)
@ One is faced thus with a bunch of new issues, including
e Preventing users to affect server’'s execution in other ways than the ones
specified
CS 464/564, Fall 2023 o Providing a mechanism for the server to report status and errors
o Resource management
@ Access control and other security issues

Stefan D. Bruda

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 1/25

DAEMONS EVERYWHERE -~ | PROGRAMMING A SERVER AS A DAEMON

@ The easy way: you put the server in background explicitly

shfd -d -v &
@ A normal program runs in foreground @ The hard way: the server puts itself into the background
o ltis attached to a terminal (more general, a “tty”) @ You start with a process that does the server initialization
o |t receives user input from that terminal o |t prints whatever messages it wants (to the terminal or something)
o It prints output (using cout<<, printf, ...) and error messages (using o It then goes in the background for the rest of the job
cerr<x, perror, ...) to the same terminal . .
. ! . . int main (...) {
@ Aserveris a daemon i.e., it runs in background Initialize server (socket binding, preparation of the file system)
@ A production server is not attached to any terminal int bgpid = fork();
@ Instead, it is launched upon boot, maybe even before terminals are born if (bgpid < 0) {
e Thus, it does not accept user input perror ("startup fork");
@ It must send the output to something else than a terminal too return 1; }
if (bgpid) // parent dies
return 0;
Child continues and becomes the server
}

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 2/25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 3/25

BACKGROUND THE HARD WAY (CONT’D)

OK, but why?
@ A server is usually started up by the init script

@ This script starts the servers in a specific order
o E.g., the database server should be started before the Web server (which
needs it)
@ The init script cannot put everything into the background from the very
start
o It has to make sure that the server actually started before moving forward
@ On the other hand, if the server never gets into background, the init script
never gets a chance to go ahead and start the other services
@ Ergo, a server that expects to be launched by the init script (they all
should!)

o Sits in foreground until it makes sure that the startup succeeded
@ Goes then into background for the actual work

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 4 /25

DEBUGGING AND OTHER VERBOSE OUTPUT N ¥

DEBUGGING A DAEMON

@ A server will eventually need debugging, like any other program

@ When this happens, it is much more convenient to run the server in
foreground

@ So that we can see the output and maybe stop it by typing Control-c

@ So it is convenient to have a command line switch that will keep the
server in foreground:

int main (...) {
Initialize (socket binding, preparation of the file system)
if (strcemp(argv[1],"-d") == 0) {

argc--; argvt+;
int bgpid = fork();
if (bgpid < 0) { o Normal operation:
perror("startup fork"); shfd -f 10000
return 1; }
if (bgpid) o Debug:
return 0; shfd -d -f 10000
}
Child (or parent) continues with the server code
}
Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 5/25

COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT N

@ Debugging programs is generally difficult
@ Debugging servers is even more so (they are concurrent, grumpy, etc.)
@ Typical debugging involves verbose logging

@ In the process the server usually stays attached so that we can stop (and
restart it) as needed

@ While attached, it is probably a good idea not to redirect the standard
output and standard error streams, as it is often more convenient to have
the whole output in the terminal

@ These variations in behaviour are best accomplished via command-line
switches

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 6/25

@ Normal way to obtain the command line arguments:

#include <stdio.h>
#include <unistd.h>

int main (int argc, char*x argv) {

for (int i = 1; i < argc; i++) {
printf("argv(%d] = %s\n", i, argv[i]); } }

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 7/25

P £52)
COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT '}" COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT '}"

@ Obtain command line arguments by identifying switches: switch argument

#include <stdio.h> /_%_\

#include <unistd.h> ++ —-c foo.cc -o foo.o
9 éw N~

extern char *optarg;
extern int optind;

switch normal switch
int main (int argc, char*x argv) { argument
int ¢
printf ("--------—- options: —---—----- \n"); Before parsing options: After parsing options:
while ((c = getopt (argc,argv,"abcd:")) != -1) {
printf("opt: %c arg %s\n", (char)c, optarg); argv[2] argv[4] argv[4] argv[3]
}
argc -= optind - 1; argv += optind - 1; argv[1] T argv(3] T argv(t] T argv[2] T
printf("-—--—- remaining args: ------ \n"); ! A B A
for (int i = 1; i < argc; i++) { g++ —c foo.cc -o foo.o g++ —c foo.cc -o foo.o
printf("argv(%d] = %s\n", i, argv[i]); } }
Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 8/25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 9/25

TYPICAL USE OF SWITCHES +- | TALKING TO DAEMONS

@ -d or -D usually stand for “debug”

o This might make the daemon more verbose but it almost always prevents the @ We have first to find the process id of the server process
daemon from detaching o We do ps aux, we get a lot of lines like this
o Typically output is produced to standard output (as opposed to log facilities), USER PID YCPU %MEM VSZ RSS TTY STAT START TIME COMMAND
but this is not always the case (probable cause: laziness) bruda 13319 0.0 0.1 2572 816 pts/1 8 12:15 0:00 shfd -d -D
@ -v usually stands for “verbose output” S
e ltincreases the verbosity of the program but does not necessarily keep the and then we hunt for our server between them _
program attached and does not necessarily change the destination of e Wedops aux | grep name, we getonly the lines that contain name
o Often different levels of verbosity are needed; this is accomplished typically @ We could then send a signal to the server
by providing multiple -v switches in the command line (the more Kill pid sends SIGQUIT to pid (which may terminate)
occurrences of -v the more verbose the program)
i) i . kill -KILL pid sends SIGKILL to pid (which will terminate)
@ As an alternative to the command line debugging behaviour can be kill -HUP pid sends SIGHUP to pid (which restarts if civilized)

changed via configuration options in a configuration file
o Often both methods are supported

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 10/25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 11/25

LONELY DAEMONS

@ Servers are lonely. It does not make sense to run multiple copies of a
server on the same machine

o How do we prevent multiple copies to run?
@ Each server has a well-known associated lock file
o Different servers use different lock files, but a server will always use the
same lock file
@ Immediately upon startup the server tries to acquire a lock on this file

o If it succeeds, it goes ahead with the rest
o If it fails, it terminates (there is another copy running)

@ An error message would be nice too. ..

@ When the server exits, it releases the lock on the file and deletes the file
o Loosely speaking, each server runs in a critical region

@ The lock file is also a good place to hold the process id of the server

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 12/25

GRUMPY DAEMONS (CONT’D)

@ The server may still try to access descriptor 0

e Many library functions assume that the first three descriptors are open
o We just exchange one error for another!
@ So we open descriptor 0 again
o This time, descriptor 0 will point to a special device which does nothing (“bit
bucket”)

o This device is called, suggestively, /dev/null
o Reading from /dev/null always return an end of file
o Anything written to /dev/null is discarded

for (int i = 0; i < getdtablesize(); i++)

if (!=1& 1 '=2)
close(i);

// We closed descriptor O already, so this

// will be the first one available

int fd = open("/dev/null", O_RDWR);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 14 /25

GRUMPY DAEMONS

@ Except for the signals they like, daemons do not want to talk to you
@ If you leave them in the sate typical for a normal program, they might

even get angry and refuse to do the work

@ This happens when they try for some reason to access standard input

(descriptor 0)
@ So we have to close descriptor 0

o What the heck, we close all the descriptors except standard output and

standard error!
for (int i = 0; i < getdtablesize(); i++)
if (4 '=1 && i '= 2)
close(i);

o Closing descriptors is very important, we thus prevent the server from

consuming resources unnecessarily but most importantly we
over the descriptors (a matter of security)

have control

o But note that we close them before opening back those descriptors we
actually need (so that we positively know what are the files on which the

server operates)

@ Closing descriptor 0 does not make our server happy though (why?)

Practical aspects of server design (S. D. Bruda)

DETACHED DAEMONS

CS 464/564, Fall 2023 13 /25

@ Each Unix process inherits a connection to its controlling tty
o A user that started a process can control it by issuing appropriate control

commands to that process’ controlling tty

@ Unlike normal programs, servers should not receive signals
the process that started it

generated by

@ Signaling from the tty to the piece of code that starts the server is acceptable

(sometimes desired), signaling to the server itself is not
@ A server must therefore detach itself from the controlling tty
#include <sys/ioctl.h>

int fd = open("/dev/tty",0_RDWR);

ioctl(£fd,TIOCNOTTY,O);
close(fd);

Practical aspects of server design (S. D. Bruda)

CS 464/564, Fall 2023 15/25

!32.

DETACHED DAEMONS AND THEIR OUTPUT -l DETACHED DAEMONS AND THEIR OUTPUT (CONT'D) -i-

@ Command line syntax varies
@ Not a good idea security-wise to rely on descriptors opened by somebody

else
@ OK, so we have now no terminal, where do we put the output? @ How about the initializing code? It should print to the terminal
@ We redirect standard output (descriptor 1) and standard error (descriptor @ So we redirect output from inside the program
2) // We close everything!!
@ Using the command line: for (int i = getdtablesize() - 1; i >= 0 ; i--)
close(i);

@ Redirecting both to the same file:
shfd -d >& global-output-file
shfd -d >>& global-output-file

o Redirecting to different files (bash-like shells):

shfd -d 1> output-file 2> error-file
shfd -d 1>> output-file 2>> error-file

// We closed descriptor O already, so this
// will be the first one available
int fd = open("/dev/null", O_RDWR);
// We now re-open descriptors 1 and 2, in this order:
Same file:
fd = open("global-output-file", O_WRONLY|O_CREAT|O_APPEND) ;
dup (£d) ;
Different files:
fd = open("output-file", O_WRONLY|O_CREAT|O_APPEND);
fd = open("error-file", O_WRONLY|O_CREAT|O_APPEND) ;

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 16 /25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 17 /25

DAEMONS DON'T LIKE SIGNALS SIGPIPE

@ There is no signal from the controlling tty, but nonetheless a server may
receive signals (e.g., from you when you use the command kill)

@ Some signals (e.g., SIGHUP, maybe) have some meaning to the server
o One signal always has some meaning to any Unix program namely, SIGKILL
@ Signals with meanings should have associated signal handlers (except

@ Notable signal
@ Sent to the server when a client closes the connection
@ When unhandled a SIGPIPE brings down the whole process

SIGKILL) @ A server must not die when a client leaves
signal (signal, handler-function); @ Therefore this signal should always be explicitly handled
@ Some other signals do not have any meaning @ Ignoring it is fine for most applications, since the socket also receives an
o Signals that are not needed should be ignored end of file

o There is a predefined function that does exactly this: SIG_IGN
signal(signal,SIG_IGN);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 18 /25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 19/25

Practical aspects of server design (S. D. Bruda)

Practical aspects of server design (S. D. Bruda)

DAEMONS ARE NOT GREGARIOUS

@ Unix places each process in a process group

@ It can then treat a set of related processes as one entity

@ A server inherits membership in a process group

@ But usually a server operates independently from any process group

e E.g., it should not receive signals sent to its parent’s group
o The server must thus leave its parent’s group:
setpgid(what-process,to-what-group) ;
@ The process id of the current process (which is passed to setpgid) can be
obtained by using the function getpid
o To create a new, private group we pass 0 as second argument of setpgrp.
So we do:
setpgid(getpid(),0);

DAEMONS AND THEIR DIRECTORIES

@ When a program is launched, it inherits an environment variable called
the current working directory

@ When a program creates or opens a file it looks in this current working
directory

@ Servers are launched by the init script, which works in a directory whose

content should not be modified
@ Servers have this habit to write on disk

@ You can specify the directory they write into by providing absolute paths
to your files

@ But a server that encounters an error condition might dump core (write to

disk a memory image for debugging purposes.. . in the current working
directory!)

@ But a server started by the system administrator will have the current
directory as the home directory of the administrator

@ But a server working in some directory will prevent that directory to be
unmounted even if the server does not use the directory for anything

@ Conclusion: You should move a server to a known, “safe” directory. Most

servers do: chdir("/run/shfd");

CS 464/564, Fall 2023 20 /25 Practical aspects of server design (S. D. Bruda)

CS 464/564, Fall 2023 22 /25 Practical aspects of server design (S. D. Bruda)

SECURE DAEMONS

@ Servers may run with root privileges

@ In other words, they can do whatever they please with your system
@ So you the programmer have to make sure they do not do things that
interfere with normal system operation

@ Careful programming is one way of keeping them at bay

o In particular, it is crucial that you check for array bounds, and that you do not
access memory areas you do not own

@ Not checking for these is the most usual cause for issuing security updates
(and for people cracking into your system)

@ Obviously a complex problem (to be continued)

@ In addition, you should be careful about what servers write to disk and

where

CONFIDENTIAL DAEMONS

@ Some data that is written to files is log data, which should be readable

(but not writable) by many people

@ Some other data should not be accessible to anybody else (e.g.,

passwords)
@ Each file in a Unix file system has a set of permissions to control access
to files
@ You can (and should) specify at creation time the permissions of the file you
create
@ You can also specify a set of permissions that will never be set (the umask)
g a S
. = =
r read permission set 32 2
w Write permission set [SRS A
x execute permission set | ™ rwxr-xrw-
- permission not set 111101110
07 5 6
< T >
permissions for the file (declared): 756
umask (denied permissions): 037 Bitwise AND with
actual permissions for the file: 740 the negated umask

CS 464/564, Fall 2023 21/25

CS 464/564, Fall 2023 23 /25

SETTING A UMASK "-'N DAEMONS AND ZOMBIES (A REMINDER)

@ You do not want to run into the possibility of creating a file owned by the
administrator and with all the permissions set (777). Not even by chance!

@ So, besides setting suitable permissions for each file you create, it is a
very good idea to provide a suitable umask for the server as a whole

@ To set a (new) umask, you use the system call umask
o ltis very comfortable to work with numbers in octal when you deal with file

@ If the main server exits, no problems will arise

@ However, if the server process creates other processes, you may end up
with zombie processes

permissions @ So remember to always wait after your children (as we talked about earlier)
. - . - . e That is, if your server spawns new processes, it has to have a suitable

@ This way a digit corresponds with a set of permissions for a given group of users .

@ In C/C++ a literal integer whose first digit is 0 is considered to be in base 8 handler for the SIGCHLD signal

@ So when you call umask, it is likely that you do not want to write @ Same issue is applicable to attached threads that are not joined
umask (137) ;

but rather

umask (0137) ;

@ Always keep in mind that the umask specifies permissions that are denied

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 24 /25 Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 25/25

