
Logging and debugging

Stefan D. Bruda

CS 464/564, Fall 2023

WHAT (AND WHEN) TO LOG

The most obvious reason to log stuff: debugging
Testing before release/submission
Maintenance (a lot of effort goes into that in the real world)

While debugging, the server is usually attached to a terminal and prints
messages to that terminal (remember the -d switch)
Other reasons for logging (during normal operation):

load monitoring and resource management
security (e.g., log any connection attempt from unauthorized users, or log
any suddenly terminated connection)

Typically, when this kind of logging happens the server is detached and
prints those messages to something else than a terminal (e.g., to a file)

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 1 / 15

LOGGING, TAKE ONE: DEBUGGING

The debugging phase is the hardest of them all if the program is complex
enough

Even more complicated when debugging servers!
These beasts are usually multiprocess or multithreaded, so good luck with
your favourite debugging GUI!

Debugging techniques most suitable for servers:
Code inspection
Verbose output

Don’t forget to save the “working” program in a safe place before
debugging

If you find yourself barking up the wrong tree (or if you manage to mess up
your program in the process), you can then start all over again

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 2 / 15

VERBOSE LOG/OUTPUT

In debugging mode, you may want to convince your server to print out
messages whenever something interesting (from a debugging point of
view!) happens

E.g., when a read or write starts, you may want to print the number of
reads/writes taking place simultaneously
Or you may want to print the command received from the client and the
answer that was sent back

This helps you isolate the problem
Then, in the piece of code you deemed responsible for your problem,

Print out various data to see where it goes bad
Use print statements to isolate the error more tightly
Do inspect the code; proper indentation does help a lot
Keep around the print statements for critical data when you attempt to solve
the problem (i.e., when you modify the buggy code)

Just don’t forget to suppress such messages during normal operation!

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 3 / 15

VERBOSE OUTPUT (CONT’D)

Exaggeration is always bad; do control the verbosity of your program
Sometimes, it is enough just to keep the server attached and printing to
the terminal
When you debug the access control to files, you do not need the
messages that refer to, say, the client-server communication
You may want to have a series of command line switches instead of only
one

E.g., -d to keep the server attached, -v comm to produce debugging
messages for the communication part, etc

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 4 / 15

COMMAND-LINE SWITCHES (EXAMPLE)

const int DEBUG_COMM = 0; const int DEBUG_FILE = 1; const int DEBUG_DELAY = 2;
int debugs[3] = {0,0,0};

int main (...) {
extern char *optarg; extern int optind;
int copt;
int detach = 1; // Detach by default
while ((copt = getopt (argc,argv,"v:dD")) != -1) {

switch ((char)copt) {
case ’d’: detach = 0; break;
case ’D’: debugs[DEBUG_DELAY] = 1; break;
case ’v’:

if (strcmp(optarg,"all") == 0)
debugs[DEBUG_COMM] = debugs[DEBUG_FILE] = 1;

else if (strcmp(optarg,"comm") == 0)
debugs[DEBUG_COMM] = 1;

else if (strcmp(optarg,"file") == 0)
debugs[DEBUG_FILE] = 1;

}
}
// Options processed, get rid of them:
argc -= (optind - 1);
argv += (optind - 1);

}

int write_excl(...) {
...

if (debugs[DEBUG_DELAY]) {
sleep(5);

} /* DEBUG_DELAY */
...
}

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 5 / 15

HOW TO LOG (NORMAL OPERATION)

The easier logging method is by output redirection
If you open appropriate files on descriptors 1 and 2, logging is a breeze

Just print out messages to one of the output streams
They will go in the appropriate places since you already set the file
descriptors to suit your needs

There are however major differences between printing to a terminal and
printing to a file: the buffer size and the synchronization policy

When printing to a terminal, you usually get away without flushing the output
Terminal buffers are small
Usually, when a newline is received, the output stream gets flushed and thus
your message appears on the screen

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 6 / 15

FILE BUFFERS

When you “print” to a file, you have to flush
Without flushing, there is absolutely no guarantee about the time it takes
for your message to actually get written on disk
If your server crashes, there is a very good chance that your last (or even
all) messages are lost
The reason for such a behaviour is the fundamental difference between
the hard disk and the video memory

File manipulation usually means transfer of large amount of data
The hard disk is a slow device
It drains by comparison a large amount of power
It does make a lot of sense to wait for a large amount of data to arrive before
writing it to disk, so that the OS can optimize the disk access
Ergo, file buffers are large (the larger the amount of free RAM, the larger are
the buffers), and are not flushed very often

Conclusion: it is very important to flush after each critical message, such
as messages that signal an error condition

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 7 / 15

ADVANTAGES AND LIMITATIONS OF REDIRECTION

Flexibility as an advantage: When a programmer writes the software, it
does not need to know where the log messages go

The programmer uses instead the standard descriptors for the output and
error streams
That they are actually redirected is immaterial as far as the code is
concerned (save for the issue with the buffer size, but then it’s a good idea to
flush the output anyway)
The server can be compiled on different machines without any change

even if one machine uses a system console to print out the messages while
another machine uses log files

Flexibility as a limitation:
A system administrator may want to forward all the log messages to some
other machine
Another sysadmin may want to forward the log messages to another
program
Using redirection all of these scenarios are awkward to implement

One can use some system of remote file systems, but this is overkill

In order to overcome these limitations, we can use (drum roll). . . a
client-server approach!

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 8 / 15

THE LOG SERVER

Each participating computer operates a log server
This server accepts and handles messages intended for the system log
Once messages are received, the server can be programmed to print them
to the console, write them to a file, or even send them to another machine
The server accepts local as well as remote connections

When a program emits an error message, it becomes a client of the log
server

The program send then the message and continues execution
The code of the program contains only information about how to send
messages to the log server

It does not know and does not care how those messages are actually handled
by the server
Much like redirection, but even more flexible

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 9 / 15

LINUX LOG SERVER: SYSLOG

Syslog consists of
A server (syslogd)
A series of library routines (i.e., C functions and shell commands) that can
be used by a program to contact the log server

Features:
Syslog groups messages into classes (according to their source and
importance)
Syslog uses a configuration file, to allow the sysadmin to specify how
different message classes are handled

For instance, if a serious error occurs, the messages might be sent to the
console, whereas low priority (or informational) messages might be redirected to
a file

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 10 / 15

SYSLOG MESSAGE CLASSES

First, syslog partition programs into facilities, i.e., groups of programs with
a common characteristic

Each log message must originate from one of these facilities
Each facility can be handled in a different way

Facility name Subsystem using the facility
LOG_KERN The kernel, i.e., the core of the OS
LOG_USER Any user process (i.e., normal application)
LOG_MAIL The email system
LOG_FTP The ftp system
LOG_DAEMONS System daemons
LOG_AUTHPRIV Security/authorization messages
LOG_LPR The printing system
LOG_CRON Clock daemons
LOG_SYSLOG Messages generated by syslogd itself
LOG_LOCALi Reserved for local use
(0 ≤ i ≤ 7)

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 11 / 15

SYSLOG MESSAGE CLASSES (CONT’D)

Log messages are also classified according to priority levels
Priority Meaning
LOG_EMERG Extreme emergency, message should be

communicated to all the users; system is unusable
LOG_ALERT A condition that requires immediate action

e.g., a corrupted passwd file
LOG_CRIT A critical error, such as hardware failure
LOG_ERR An error that requires attention, but is not critical
LOG_WARNING A warning (there might be an error)
LOG_NOTICE Normal, but significant, condition
LOG_INFO Informational message e.g., messages

printed by a daemon during normal startup
LOG_DEBUG Messages used by programmers for debugging

Each priority level can be handled in a different way

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 12 / 15

USING SYSLOG

You should include, as usual, a header with declarations for the library
functions

#include <syslog.h>

Then you have to open access for your program to the syslog
openlog(identity, options, facility);
openlog("shfd", LOG_CONS|LOG_PID, LOG_USER);

No status is returned (why?)

Once the syslog is opened, you can write to it using syslog

syslog(LOG_WARNING, "Message %d corrupted", message);

First argument is the priority, the rest are the same as for printf

Once you are done with the syslog you do
closelog();

Even if you don’t see it, opening the syslog allocated an entry in the
descriptor table, so it is a good idea to close it when no longer needed

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 13 / 15

A SYSLOG CONFIGURATION FILE

A configuration file (/etc/syslog.conf) specifies which messages goes
where

Generic form: facility.priority where
“Globbing” (i.e., pattern matching) is allowed; priority may be none (meaning
explicit exclusion of messages from that facility)

Log all kernel messages to the console.
kern.* /dev/console
Log anything (except mail) of level info or higher.
Don’t log private authentication messages!
*.info;mail.none;authpriv.none;cron.none /var/log/messages
The authpriv file has restricted access.
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
Log cron stuff
cron.* /var/log/cron
Everybody gets emergency messages
*.emerg *
Save boot messages also to boot.log
local7.* /var/log/boot.log
Some logs also go to a world readable file
local6.* /var/log/students.log
local6.* /dev/tty12

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 14 / 15

SYSLOG ISSUES

A message is typically prefixed by syslog with the current date and the
machine on which the event happened, e.g.
Mar 19 20:02:56 turing motion: [0:motion] [NTC] [ALL] motion_startup: Motion
4.0.1 Started
Mar 19 20:02:57 turing motion: [0:motion] [NTC] [ALL] motion_startup: Logging
to syslog
Mar 19 20:02:57 turing motion: [0:motion] [NTC] [ALL] motion_startup: Using
log type (ALL) log level (WRN)
Mar 20 06:35:47 hoare kernel: [4564877.497919] ata2: hard resetting link
Mar 20 06:35:47 hoare kernel: [4564877.806289] ata2: SATA link up 1.5 Gbps
(SStatus 113 SControl 310)
Mar 20 06:35:47 hoare kernel: [4564877.808856] ata2.00: configured for UDMA/33
Mar 20 06:35:47 hoare kernel: [4564877.808871] ata2: EH complete
Mar 20 20:55:00 clarke kernel: Kernel logging (proc) stopped.
Mar 20 20:55:00 clarke kernel: Kernel log daemon terminating.
Mar 20 20:55:01 chomsky kernel: Kernel logging (proc) stopped.
Mar 20 20:55:01 chomsky kernel: Kernel log daemon terminating.
Mar 20 20:55:01 clarke exiting on signal 15
Mar 20 20:55:02 chomsky exiting on signal 15

Log files will grow with time; what do we do with them?
We rotate them periodically
Meaning that from time to time (typically: weekly) we create them afresh
A number of archival copies are usually kept

Logging and debugging (S. D. Bruda) CS 464/564, Fall 2023 15 / 15

