
The User Datagram Protocol

Stefan D. Bruda

CS 454/564, Fall 2023

TCP IS HEAVYWEIGHT

“Hi, I’d like to hear a TCP joke.”
“Hello, would you like to hear a TCP joke?”
“Yes, I’d like to hear a TCP joke.”
“OK, I will tell you a TCP joke.”
“Are you ready to hear a TCP joke?”
“Yes, I am ready to hear a TCP joke.”
“OK, I am about to send the TCP joke. It will last 10 seconds, has 2
characters, it does not have a setting, it ends with a punchline.”
“OK, I am ready to get the TCP joke that will last 10 seconds, has 2
characters, does not have a setting, and ends with a punchline.”
“I’m sorry, your connection has been timed out.”
“Hello, would you like to hear a TCP joke?”

The actual layer that transports data between machines is IP, which is a
packet-switching, best-effort (unreliable) protocol
TCP adds significant overhead to ensure reliability

Four-way handshake, sequence numbers, checksums, acknowledgments
and retransmissions

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 1 / 17

UDP

“I like telling UDP jokes because I don’t care if you don’t get them.”

Very similar to the TCP in terms of API
Dissimilar with TCP in terms of innards (and hence programming
techniques)

Many-to-many communication. Unlike TCP (point-to-point communication),
UDP allows wide flexibility in the number of applications that can
communicate with each other

multicast and broadcast facility

Unreliable delivery. A message can arrive in duplicate, or not arrive at all
No flow control. When messages arrive faster than they can be consumed,
they are dropped
Message paradigm. Unlike TCP (stream paradigm) UDP communication is
based on individual messages (datagrams)
Less overhead. UDP algorithms are simpler and thus communication is
faster

Your (informed) choice: one cannot choose between the sharply different
TCP and UDP without taking into consideration the requirements of the
application protocol

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 2 / 17

UDP CLIENTS

Algorithm similar with TCP:
1 Obtain the IP address and port number of the server (unchanged)
2 Allocate a socket
3 Choose a port for communication (arbitrary, unused)
4 Specify the server to which messages are to be sent
5 Communicate with the server (application protocol, send and receive

messages)
6 Close the socket

Socket allocation:
Need to specify the protocol family and the socket type (UDP)
#include <sys/types.h>

#include <sys/socket.h>

int sd = socket(PF_INET, SOCK_DGRAM, 0);

We end up with a socket descriptor

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 3 / 17

CONNECT TO A SERVER

int connectUDP(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
int sd;
const int type = SOCK_DGRAM;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL)

return err_host;
memcpy(&sin.sin_addr, hinfo->h_addr, hinfo->h_length);
sin.sin_port = (unsigned short)htons(port);
sd = socket(PF_INET, type, 0);
if (sd < 0)

return err_sock;
int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 4 / 17

CONNECT TO A SERVER

int connectUDP(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
int sd;
const int type = SOCK_DGRAM;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname(host);
if (hinfo == NULL)

return err_host;
memcpy(&sin.sin_addr, hinfo->h_addr, hinfo->h_length);
sin.sin_port = (unsigned short)htons(port);
sd = socket(PF_INET, type, 0);
if (sd < 0)

return err_sock;
int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);
return err_connect;

}
return sd;

}

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 5 / 17

CONNECTED AND UNCONNECTED UDP SOCKETS

Client applications can use a UDP socket in connected and unconnected
mode

To enter connected mode, the client calls connect to specify the remote
endpoint address
To communicate using an unconnected socket we have to specify the
remote endpoint address each time we send a message
This is the only difference between connected and unconnected sockets

a call to connect does not initiate any packet exchange
it just stores the remote address for future use
even if the call succeeds there is no guarantee that the address is valid, that
the server is up, or that the server is reachable

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 6 / 17

COMMUNICATE WITH THE SERVER

We assume hereby that we have a “connected” socket
We then send data using send and receive responses using recv

Each time we call send, UDP sends a single message to the server
containing all the data to be sent
There is no longer the case that we might receive the answer in pieces
Each call to recv returns a complete message, we no longer need
repeated calls

If the receiving buffer is large enough, we end up with our original message
If the message is too large for the buffer. . .
the bytes that cannot be stored are discarded without feedback

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 7 / 17

CLOSING THE CONNECTION

close closes the connection and destroys the socket
The machine on which the close occurs does not inform its peer about the
event
The peer should be aware of this and know how long should it keep the data
structures for the interaction with the client

We can think of using shutdown to partially close the socket
Unfortunately, such a call is useless
The purpose of partial close was to inform the peer
UDP does not do this, the peer does not receive any indication of what
happened on the other end (no end-of-file, no SIGPIPE)

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 8 / 17

UDP SERVERS

In principle, your UDP server is just your usual server
We can have concurrent or iterative servers
We can build our servers stateless or stateful

In practice, many combination do not make a lot of sense
It is hard to argue for a stateful UDP server
Under UDP, it is often the case that process/thread creation is too expensive

0 p c 2p 2c 2c+p

C
o
n
c
u
rr

e
n
t

Iterative

Time

Create slave 2Create slave 1

Process req. 1 Process req. 2

Process req. 2

Process req. 1

Few UDP servers have concurrent implementations in practice

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 9 / 17

A UDP CONCURRENT SERVER

1 create and bind the master socket
2 leave the master socket unconnected
3 repeat forever:

1 call recvfrom to receive the next request from a client
no call to accept is involved
no slave socket is created

2 fork/create thread?
3 (in child thread) do:

1 form a reply according to the application protocol
2 send the reply back to the client through the master socket using sendto
3 terminate

4 continue with the loop

A concurrent implementation does not make a lot of sense
The child terminates after serving one request
About the only reason for concurrency is a time consuming step 3.3.1

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 10 / 17

CREATE AND BIND A UDP SERVER SOCKET

int passiveUDP(const unsigned short port, const int backlog,

const unsigned long int ip_addr) {

struct sockaddr_in sin;

int sd;

const int type = SOCK_DGRAM;

memset(&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = ip_addr; // usually INADDR_ANY

sin.sin_port = (unsigned short)htons(port);

sd = socket(PF_INET, type, 0);

if (sd < 0)

return err_sock;

if (bind(sd, (struct sockaddr *)&sin, sizeof(sin)) < 0)

return err_bind;

// if (listen(sd, backlog) < 0)

// return err_listen;

return sd;

}

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 11 / 17

UNCONNECTED SOCKETS

An unconnected socket does not store the coordinates of a peer
So the servers must use this kind of socket (they have more than one peer
usually)
The clients may use unconnected sockets (especially when they
communicate with more than one server)

To send through an unconnected socket, we use
int sendto(int socket, const void *msg, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen)

How do we obtain the address of the peer?

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 12 / 17

UNCONNECTED SOCKETS (CONT’D)

How do we obtain the address of the peer?
We create it, as we did for the call to bind

This is how we implement broadcast: we create a sockaddr structure
containing the IP address INADDR_BROADCAST

When we send a reply, recvfrom gives us the reply address
In addition to the buffer that holds the received message, a second buffer
is filled in with the address of the sender
int recvfrom(int socket, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

So we do something like this:
// other data (sd, request, rsize, etc.)

// declared and initialized as appropriate

struct sockaddr_in peer; socklen_t psize;

r = recvfrom(sd, request, rsize, 0,

(struct sockaddr*)&peer, &psize);

// check r, prepare the buffer reply

sendto(sd, reply, strlen(reply), 0,

(struct sockaddr*)&peer, psize);

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 13 / 17

ON UDP UNRELIABILITY

Our client and server algorithms ignore one crucial aspect of UDP
communication: unreliability

UDP communication semantics: unreliable, or best effort delivery

Clients and servers must implement reliable communication all by
themselves

We can use timeout and retransmission mechanisms
But then this introduces the problem of duplicate packets, which must also
be handled
Adding reliability can be difficult, and is closely related to the semantics of
the application protocol

Reliability can be approached in two ways:
Ignore the problem. Do nothing, and so accept the possibility of dropped
messages
Deal with the problem. Implement control algorithms using message
sequencing, acknowledgments, timeouts and retransmissions

We thus end up with another implementation of TCP (so we would be better off
using TCP in the first place)

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 14 / 17

TO USE OR NOT TO USE

One should in principle prefer TCP
Useful features already implemented: reliability, point-to-point, flow control
Less burden on the application programmer
In fact most Internet services use TCP precisely for these reasons

Major reasons for not using TCP: speed and bandwidth
TCP introduces a significant communication overhead (in terms of both
bandwidth and time)
Some applications do not tolerate this overhead

Typical examples: games, real-time video streaming, VOIP

This kind of applications will typically use UDP
They usually use the “do not care” approach to reliability!

We do not care about a frame dropped now and then; it is more important that
say, the video stream is delivered in real time
If we start implementing reliable communication we introduce the same kind of
overhead we had problems with in the first place

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 15 / 17

TO USE OR NOT TO USE (CONT’D)

Another reason for using UDP: broadcast/multicast capabilities
Good example: the DHCP protocol
A machine can obtain its IP address and other routing information
automatically from a DHCP server
However, the machine cannot contact the server directly

It has no idea how to send packets to a precise destination at all!
Indeed, it does not even know its IP address

DHCP is thus a UDP application
The client broadcasts blindly a “discovery packet” (impossible under TCP)
The quickest DHCP server within reach responds with the IP address, routing
information, etc. . . with a broadcast message of its own

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 16 / 17

ADDENDUM TO MULTISERVICE SERVERS

The concept of multiservice
servers extends of course to
UDP servers
The same idea as for TCP:
multiple threads listen to
multiple ports and serve
different types of clients

The difference is that there
are no slave UDP threads

In addition, it is often the case
in practice that we have
multiprotocol servers

That is, servers that accept
both TCP and UDP clients
Typically, such a server
serves the same kind of
requests arriving on both
TCP and UDP ports

Child

thread

Child

thread

Child

thread

connect
requests

connect
requests

connect
requests

n
e
w

 c
lie

n
ts

(o
f d

iffe
re

n
t ty

p
e
s
)

Parent

thread

Parent

thread

Parent

thread

U
D

P
 c

lie
n
ts

 (n
o
 n

o
tio

n
 o

f in
c
o
m

in
g
/e

x
is

tin
g
 c

lie
n
ts

 h
e
re

)

c
o
m

m
u
n
ic

a
te

c
lie

n
ts

 b
e
in

g
 s

e
rv

e
d

thread

UDP

UDPTCP

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 17 / 17

