TCP IS HEAVYWEIGHT

“Hi, I'd like to hear a TCP joke.”

“Hello, would you like to hear a TCP joke?”

“Yes, I'd like to hear a TCP joke.”

“OK, I will tell you a TCP joke.”

The User Datagram Protocol “Are you ready to hear a TCP joke?”

“Yes, | am ready to hear a TCP joke.”

“OK, | am about to send the TCP joke. It will last 10 seconds, has 2
characters, it does not have a setting, it ends with a punchline.”

“OK, | am ready to get the TCP joke that will last 10 seconds, has 2
characters, does not have a setting, and ends with a punchline.”

“I'm sorry, your connection has been timed out.”

CS 454/564, Fall 2023 “Hello, would you like to hear a TCP joke?”

Stefan D. Bruda

@ The actual layer that transports data between machines is IP, which is a
packet-switching, best-effort (unreliable) protocol

@ TCP adds significant overhead to ensure reliability

e Four-way handshake, sequence numbers, checksums, acknowledgments
and retransmissions

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 1/17

UDP CLIENTS

“I like telling UDP jokes because | don’t care if you don’t get them.”

@ Algorithm similar with TCP:

@ Obtain the IP address and port number of the server (unchanged)

@ Allocate a socket

@ Choose a port for communication (arbitrary, unused)

© Specify the server to which messages are to be sent

@ Communicate with the server (application protocol, send and receive
messages)

@ Close the socket

@ Very similar to the TCP in terms of API

@ Dissimilar with TCP in terms of innards (and hence programming
techniques)
@ Many-to-many communication. Unlike TCP (point-to-point communication),
UDP allows wide flexibility in the number of applications that can
communicate with each other

@ multicast and broadcast facility
o Unreliable delivery. A message can arrive in duplicate, or not arrive at all
o No flow control. When messages arrive faster than they can be consumed,
they are dropped

o Message paradigm. Unlike TCP (stream paradigm) UDP communication is @ Socket aIIocatlon.: .
based on individual messages (datagrams) @ Need to specify the protocol family and the socket type (UDP)

o Less overhead. UDP algorithms are simpler and thus communication is #include <sys/types.h>
faster #include <sys/socket.h>

. . . int sd = socket(PF_INET, SOCK_DGRAM, 0);
@ Your (informed) choice: one cannot choose between the sharply different o We end up with a socket descriptor
TCP and UDP without taking into consideration the requirements of the
application protocol

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 2/17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 3/17

CONNECT TO A SERVER

CONNECT TO A SERVER

int connectUDP(const char* host, const unsigned short port) {

struct hostent *hinfo;
struct sockaddr_in sin;
int sd;
const int type = SOCK_DGRAM;
memset (&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname (host);
if (hinfo == NULL)
return err_host;
memcpy (&sin.sin_addr, hinfo->h_addr, hinfo->h_length);
sin.sin_port = (unsigned short)htons(port);
sd = socket(PF_INET, type, 0);
if (sd < 0)
return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));

if (rc < 0) {
close(sd);
return err_connect;

return sd;

int connectUDP(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
int sd;
const int type = SOCK_DGRAM;
memset (&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
hinfo = gethostbyname (host);
if (hinfo == NULL)
return err_host;
memcpy (&sin.sin_addr, hinfo->h_addr, hinfo->h_length);
sin.sin_port = (unsigned short)htons(port);
sd = socket(PF_INET, type, 0);
if (sd < 0)
return err_sock;
int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {
close(sd);
return err_connect;

return sd;

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 4 /17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 5/17

CONNEGTED AND UNCONNECTED UDP SOCKETS - l COMMUNICATE WITH THE SERVER

Client applications can use a UDP socket in connected and unconnected
mode

@ To enter connected mode, the client calls connect to specify the remote
endpoint address

@ To communicate using an unconnected socket we have to specify the
remote endpoint address each time we send a message
@ This is the only difference between connected and unconnected sockets
@ acall to connect does not initiate any packet exchange
@ it just stores the remote address for future use
e even if the call succeeds there is no guarantee that the address is valid, that
the server is up, or that the server is reachable

@ We assume hereby that we have a “connected” socket

@ We then send data using send and receive responses using recv

@ Each time we call send, UDP sends a single message to the server
containing all the data to be sent

@ There is no longer the case that we might receive the answer in pieces

@ Each call to recv returns a complete message, we no longer need
repeated calls
o If the receiving buffer is large enough, we end up with our original message
o If the message is too large for the buffer. ..
the bytes that cannot be stored are discarded without feedback

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 6/17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 7/17

CLOSING THE GONNEGTION -l UDP SERVERS

@ In principle, your UDP server is just your usual server
@ We can have concurrent or iterative servers

@ close closes the connection and destroys the socket ° We can build our servers stateless or stateful

@ The machine on which the close occurs does not inform its peer about the @ In practice, many combination do not make a lot of sense
event o ltis hard to argue for a stateful UDP server

o The peer should be aware of this and know how long should it keep the data e Under UDP, it is often the case that process/thread creation is too expensive
structures for the interaction with the client [~ Processeq.2 |
@ We can think of using shutdown to partially close the socket
o Unfortunately, such a call is useless Process req. |
‘ Create slave 1 ‘ Create slave 2 ‘

Concurrent

@ The purpose of partial close was to inform the peer
o UDP does not do this, the peer does not receive any indication of what
happened on the other end (no end-of-file, no SIGPIPE)

lterative ‘ Process req. 1 ‘ Process req. 2 ‘

Time
0 p c 2p 2c 2c+p
o Few UDP servers have concurrent implementations in practice
The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 8/17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 9/17

A UDP CONCURRENT SERVER - | CREATE AND BIND A UDP SERVER SOCKET

. int passiveUDP(const unsigned short port, const int backlog,
@ create and bind the master socket const unsigned long int ip_addr) {

@ leave the master socket unconnected struct sockaddr_in sin;

© repeat forever: int sd;

@ call recvfrom to receive the next request from a client const int .type B ?OCK‘DGP}AM;
. memset (&sin, 0, sizeof(sin));
@ no call to accept is involved

@ no slave socket is created s::Ln.SJ:.n_fa.mily = AF-INET;
fork/create thread? sin.sin_addr.s_addr = ip_addr; // usually INADDR_ANY
Uncththread)dd: sin.sin_port = (unsigned short)htons(port);
sd = socket(PF_INET, type, 0);
if (sd < 0)
return err_sock;
if (bind(sd, (struct sockaddr *)&sin, sizeof(sin)) < 0)
return err_bind;

00

@ form a reply according to the application protocol
@ send the reply back to the client through the master socket using sendto
© terminate

@ continue with the loop

@ A concurrent implementation does not make a lot of sense // if (listen(sd, backlog) < 0)
e The child terminates after serving one request /7 return err_listen;
o About the only reason for concurrency is a time consuming step 3.3.1 return sd;
}

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 10/17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 11/17

UNCONNEGTED SOCKETS - UNCONNECTED SOCKETS (CONT'D)

How do we obtain the address of the peer?
@ We create it, as we did for the call to bind
@ This is how we implement broadcast: we create a sockaddr structure

@ An unconnected socket does not store the coordinates of a peer containing the |P address INADDR_BROADCAST
@ So the servers must use this kind of socket (they have more than one peer @ When we send a reply, recvfrom gives us the reply address
usually) . @ In addition to the buffer that holds the received message, a second buffer
e The clients may use unconnected sockets (especially when they is filled in with the address of the sender

communicate with more than one server
) int recvfrom(int socket, void *buf, size_t len, int flags,

@ To send through an unconnected socket, we use struct sockaddr *from, socklen_t *fromlen):
int sendto(int socket, const void *msg, size_t len, int flags, @ So we do something like this:
const struct sockaddr *to, socklen_t tolen) // other data (sd, request, rsize, etc.)
@ How do we obtain the address of the peer? // declared and initialized as appropriate

struct sockaddr_in peer; socklen_t psize;
r = recvfrom(sd, request, rsize, O,
(struct sockaddr*)&peer, &psize);
// check r, prepare the buffer reply
sendto(sd, reply, strlen(reply), O,
(struct sockaddr*)&peer, psize);

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 12/17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 13/17

ON UDP UNRELIABILITY i~ | To USE OR NOT TO USE

@ Our client and server algorithms ignore one crucial aspect of UDP

communication: unreliability @ One should in principle prefer TCP
o UDP communication semantics: unreliable, or best effort delivery o Useful features already implemented: reliability, point-to-point, flow control
@ Clients and servers must implement reliable communication all by o Less burden on the application programmer
themselves @ In fact most Internet services use TCP precisely for these reasons
e We can use timeout and retransmission mechanisms @ Major reasons for not using TCP: speed and bandwidth
@ But then this introduces the problem of duplicate packets, which must also e TCP introduces a significant communication overhead (in terms of both
be handled bandwidth and time) _
e Adding reliability can be difficult, and is closely related to the semantics of e Some applications do not tolerate this overhead
the application protocol @ Typical examples: games, real-time video streaming, VOIP
@ Reliability can be approached in two ways: e This kind of applications will typically use UDP
. - o They usually use the “do not care” approach to reliability!
@ Ignore the problem. Do nothing, and so accept the possibility of dropped L)
messages @ We do not care about a frame dropped now and then; it is more important that

say, the video stream is delivered in real time
@ If we start implementing reliable communication we introduce the same kind of
overhead we had problems with in the first place

o Deal with the problem. Implement control algorithms using message
sequencing, acknowledgments, timeouts and retransmissions

@ We thus end up with another implementation of TCP (so we would be better off
using TCP in the first place)

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 14 /17 The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 15/17

TO USE OR NOT TO USE (CONT'D)

@ Another reason for using UDP: broadcast/multicast capabilities
@ Good example: the DHCP protocol
@ A machine can obtain its IP address and other routing information
automatically from a DHCP server

e However, the machine cannot contact the server directly
@ It has no idea how to send packets to a precise destination at all!
@ Indeed, it does not even know its IP address

@ DHCP is thus a UDP application
@ The client broadcasts blindly a “discovery packet” (impossible under TCP)
@ The quickest DHCP server within reach responds with the IP address, routing

information, etc. .. with a broadcast message of its own

The User Datagram Protocol (S. D. Bruda) CS 454/564, Fall 2023 16/17

@ The concept of multiservice
servers extends of course to

UDP servers

@ The same idea as for TCP:

multiple threads listen to
multiple ports and serve
different types of clients

o The difference is that there
are no slave UDP threads

@ In addition, it is often the case

in practice that we have
multiprotocol servers

e That s, servers that accept

both TCP and UDP clients

o Typically, such a server

serves the same kind of
requests arriving on both
TCP and UDP ports

The User Datagram Protocol (S. D. Bruda)

| ToP

Child
#\thread) :

" — o

o | e

8 El

I i 3 : (7]

! 1 | o

i 3 g

: ‘ 3 3
] 5 : =, : Q
* (Child 28— | @
thread) T g
[}

Q

| (Child <
: thread :

connect! |9
requests: =3
=3

)

connect : 3
requests:)
; =z

e}

(o]

o)

connect :
requests -

sjusId mau k

UDP

(a1ay sjualjo Bunsixa/Buiwiodul Jo uoiou ou) siualP 4dn

CS 454/564, Fall 2023 17 /17

