Working with multiple files

Stefan D. Bruda

CS 464/564, Fall 2023

SPLITTING THE CODE

@ Often we want to split our program into multiple files (or modules)
@ Advantages: encapsulation, reusability, size
o Compilation time also reduced
@ A module consists of two parts:
e the header file, where all the declarations available outside the module go
(e.g., tcp-util.h)
o the C/C++ code which implements the things declared in the header (e.g.,
tcp-util.cc)
@ Another module (say main.cc) that wants to use tcp-util.cc will use
the directive
#include "tcp-util.h"

@ Then tcp-util.cc and main. cc will be compiled and linked together
o We can automate this process by encoding the recipe into a makefile

Working with multiple files (S. D. Bruda) CS 464/564, Fall 2023 1/6

BRINGING YOUR PROGRAM TO LIFE

for (int i = 0; i < 10; i++) {
‘ cout << i << "*¥" << i <<

‘ High level code
foo.cc
(declarations ¢

for cout, ‘Headers }—>(Compiler]

<<,)

lis 9, cout@ha

‘ Assembly language program ‘ a3 o1(9)
a ,cout

foo.s
1wz 4,16(31)
|
\ Object code ‘ ...01101001010001100. ..

foo.o
(code that ¢
implements Librar }—»1 Linker ¢
cout, <<, ...) ‘ Y ¢]

‘ Executable program ‘ ...01110001011101100...

a.out/foo

Working with multiple files (S. D. Bruda) CS 464/564, Fall 2023 2/6

BRINGING YOUR PROGRAM TO LIFE (CONT’D)

‘ High level code ‘

foo.cc

—* a.out/foo

Working with multiple files (S. D. Bruda)

4] .
0 (declarations ¢
° for cout, ‘Headers }—>(Compiler]
o <<,)
(]
84 N ‘Assembly language program ‘
“ \ g++ -S foo.cc foo.s
o \
| \
al |
3|
= \
! \\ ‘ Object code ‘
? \ g++ —c foo.cc foo.o
\ (code that
+ | implements ; ,[;
+ Librar Linker
o \cout,<<,"J‘ y ¢]
~___ ‘ Executable program ‘

for (int i = 0; i < 10; i++) {
cout << i << "*M" << i <<

lis 9, cout@ha
la 3,cout@l(9)
1wz 4,16(31)

¢

..01101001010001100...

¢

..01110001011101100...

CS 464/564, Fall 2023 3/6

PUTTING MANY MODULES TOGETHER

<]
o
- ‘ High level code ‘ ‘ High level code ‘ Q
8 tcp-util.cc ¢ client.cc i
|
% |
3 Headers }—>(Compiler] Q
|
o tecp-util.h o
~ o)
'g ‘ Assembly language program ‘ ‘ Assembly language program ‘ o
1 tcp-util.s client.s g
-3 o
s o
o °
| ~
[
v 0
! . -]
" Object code ‘ Object code ‘ o
% tcp-util. o ‘ client.o a

1 1
‘Library }—»(Linker)

‘ Executable program ‘ g++ —o triv_client tcp-util.o client.o

triv client

Working with multiple files (S. D. Bruda) CS 464/564, Fall 2023 4/6

MAKEFILES

@ A makefile contains recipes for compiling multiple file programs
@ A makefile contains macrodefinitions, e.g.,

this is a comment

CXX = g++

CXXFLAGS = -g -Wall

@ Then we have rules of the form:

target : [sourcel] [source2] [source3]
S © commandl
: command?2

Ecommand3

Exactly one TAB on each line here!

e Atargetis the name of the file to be produced
@ ltis produced by executing the corresponding commands

e The sources are the files needed to produce the target (if any)
@ They form a dependency tree

Working with multiple files (S. D. Bruda) CS 464/564, Fall 2023 5/6

MAKEFILES (CONT’'D)

@ Sample makefile:

all: triv_client

tcp-utils.o: tcp-utils.h tcp-utils.cc
$(CXX) $(CXXFLAGS) -c -o tcp-utils.o tcp-utils.cc

client.o: tcp-utils.h client.cc
$(CXX) $(CXXFLAGS) -c -o client.o client.cc

triv_client: client.o tcp-utils.o
$(CXX) $(CXXFLAGS) -o triv_client client.o tcp-utils.o

clean:
rm -f triv_client *~ *.o0 *.bak core \#x*

Suppose you type make target in some directory d
e make without arguments produces the first target in the makefile
The command looks for a file called Makefile in d and follows all the

necessary rules therein along the dependency tree to produce the file
target

All the targets needed by target (based on said dependency tree) are also
made, unless they are up to date (decision based on modification times)

Working with multiple files (S. D. Bruda) CS 464/564, Fall 2023 6/6

