CS 467/567: Introduction to Parallel Algorithms

Stefan D. Bruda

Winter 2020

f
PARALLEL MODELS: IT ALL STARTS FROM THE RAM -~

@ The Random Access Machine (RAM)

Processor 1

Memory access
unit (MAU)

@ Programming language: pseudocode

CS 467/567 (S. D. Bruda) Winter 2020 1/14

PARALLEL MODELS: THE PRAM

@ The Parallel Random Access Machine (PRAM)

[Processor 1 J [Processor 2] [Processor n]
/ >
//
Conflict resolution for memory access:

EREW, CREW
CRCW (Priority, Common, Combining)

Memory access
unit (MAU)

@ Programming language: pseudocode

o Extra statement:
for i = 1 to ndo in parallel { statements parameterized on processor p; }

CS 467/567 (S. D. Bruda) Winter 2020 2/14

PARALLEL MODELS: INTERCONNECTION NETWORKS

@ The Interconnection network

[Processor 1 J

[Processor 2]

. [Processor n]

unit (MAU)

{Memory access J

{Memory access }

unit (MAU)

{Memory access }

unit (MAU)

@ Programming language: pseudocode
o Extra statements: send and receive (via point-to-point connections only)

CS 467/567 (S. D. Bruda)

[1A [1A [1
GRGNE GRESN® BRGON®
GRGRE O 00 BRONG

Winter 2020

3/14

PERFORMANCE OF PARALLEL ALGORITHMS

@ We charge one time unit for each elementary computation step (like in
the sequential case)

@ We also charge for moving data from one processor to another = routing
steps

o Generally the cost of moving data depends on the distance between
processors

@ Routing cost for shared memory:

e Uniform analysis: constant time for memory access
o Discriminating analysis: O(log M) time for accessing one word in memory of
size M

@ Routing for interconnection networks: O(1) time per direct link traversed

@ Putting all these costs together we obtain the running time ¢ : N - IN
e Usually worst case analysis

CS 467/567 (S. D. Bruda) Winter 2020 4/14

PERFORMANCE OF PARALLEL ALGORITHMS CONT'D

@ Measures of parallel performance: speedup S, : N — N, efficiency
Ep,: N — N,andcost¢p: N — N
h £ Sp

Sp=g s

Cp = p X tp
e I, : N — N is the time taken by the p-processor algorithm being analyzed to

solve the problem
e t; : N — NN is the time taken by the best known sequential algorithm to solve

the same problem
@ Speedup and efficiency are usually (but not always) invariable with the input

size
Theorem (Speedup theorem)
In the classical theory of parallel algorithms S, < p and so E, < 1

@ A parallel algorithm with S, = p (or E, = 1, or ¢, = ;) is optimal
@ If S, = O(1) then the running time of the parallel algorithm is just as bad
as the running time of a sequential algorithm
e This is believed to happen to all the P-complete problems

CS 467/567 (S. D. Bruda) Winter 2020 5/14

PERFORMANCE OF PARALLEL ALGORITHMS CONT'D

@ Another important measure is the slowdown = effect on running time of
reducing the number of processors

Theorem (Slowdown theorem)

In the classical theory of parallel algorithms if a certain computation can be
performed with p processors in time t, and with g < p processors in time t,
thent, < ty < b + plp/q

@ Number of processors also important
o Number of processors can or cannot be optimal
@ ltis possible that an analysis of the algorithm reveals that a number of
processors are idle most of the time and so can be discarded without affecting
the performance
@ Sometimes the optimal running time can only be achieved with a certain
number of processors
@ Sometimes reducing the number of processors below a certain threshold
results in an unacceptable slowdown

CS 467/567 (S. D. Bruda) Winter 2020 6/14

PARALLEL MODELS: COMBINATIONAL CIRCUITS

@ Processors capable of performing the usual logic and arithmetic
operations on O(log n)-sized words but having only a constant number of
internal registers

@ The processors are connected to each other as vertices in a directed
acyclic graph

e Vertices with no incoming edges are input processors
e Vertices with no outgoing edges are output processors

@ The processors can be viewed as aligned into columns, one column per

distance from the input nodes
e Itis convenient (though not strictly necessary) to have all the output vertices
in the rightmost column

@ Performance measures for combinational circuits:

o The depth of the circuit (or number of columns)
e The width of the circuit (the number of processors in the largest column)

CS 467/567 (S. D. Bruda) Winter 2020 7/14

PARALLEL MODELS: COMBINATIONAL CIRCUITS

@ Processors capable of performing the usual logic and arithmetic
operations on O(log n)-sized words but having only a constant number of
internal registers

@ The processors are connected to each other as vertices in a directed
acyclic graph

e Vertices with no incoming edges are input processors
e Vertices with no outgoing edges are output processors

@ The processors can be viewed as aligned into columns, one column per

distance from the input nodes
e lItis convenient (though not strictly necessary) to have all the output vertices
in the rightmost column

@ Performance measures for combinational circuits:

o The depth of the circuit (or number of columns)
e The width of the circuit (the number of processors in the largest column)

@ The combinational circuit represents the unfolded computation of an
“usual” parallel machine (depth = running time; width = number of
processors; cost = depth x width)

CS 467/567 (S. D. Bruda) Winter 2020 7/14

PARALLEL PREFIX COMPUTATIONS

@ Problem: Given an array x with n values, find all the prefix sums
Si = > k_o Xi» 0 < i < n, where the summation is done according to an
associative binary operation o
Algorithm RAM_PREFIX (Xo..n—1) returns sy ,_1:

Q s — X
Q fori=1ton—1do:

Q si—si_10x%

CS 467/567 (S. D. Bruda) Winter 2020 8/14

PARALLEL PREFIX COMPUTATIONS

@ Problem: Given an array x with n values, find all the prefix sums
Si = > k_o Xi» 0 < i < n, where the summation is done according to an
associative binary operation o

Algorithm RAM_PREFIX (Xo..n—1) returns sy ,_1:

Q s — X
Q fori=1ton—1do:

Q si—si_10x%

Algorithm PRAM_PREFIX (Xo...n—1) returns sp_ ,_1:
@ fori=0to n—1doin parallel:
Q si <X
@ forj=0tologn—1do:
@ fori=2/to n—1doin parallel:
@ si<— 5 508
@ Sequential time: £ (n) = O(n) (also a lower bound); parallel time:
tr(n) = O(log)
@ Cost: cy(n) = O(nlog n) (PRAM_Prefix is not optimal)

CS 467/567 (S. D. Bruda) Winter 2020 8/14

AN OPTIMAL PRAM ALGORITHM FOR PREFIX

COMPUTATIONS

@ We exploit the associativity of o
@ Let k = lognand m = n/k (rounded); we use an m-processor algorithm
@ All the processors P;, 0 < i < muse in parallel RAM_PREFIX to compute
he prefix sums Si, Sik41, - - -, S(i+1)(k-1), Where
Sik+j = Xik © Xik+1 © *** O Xik+j
e O(k) = O(log n) time
@ Now PRAM_PREFIX is used on all the processors to compute the prefix
sum of the sequence (sx_1, Sok_1, - - -, Sn—1); the result is put back into
(Sk—1,S2k—15 -+, Sn—1)
@ At the end of this step si_1 will be replaced with sx_1 0 Spxk_1 0+ 0 Sjk_1
@ O(logm) = O(log(n/logn)) time
@ Fnally, all processors P;, 1 < i < m perform sequentially
o Executed sequentially by all processors (except Po)
e O(k) = O(log n) time

CS 467/567 (S. D. Bruda) Winter 2020 9/14

AN OPTIMAL PRAM ALGORITHM FOR PREFIX

COMPUTATIONS (CONT'D)

@ {(n) = O(log n) + O(log(n/log n)) + O(log n) = O(log n) and so
c(n) = O(n)

@ The algorithm also illustrated how an m-processor PRAM can be made to
run an algorithm designed to run on n processors, n > m
e This “self-simulation” is extremely useful in practice
@ It shows how to solve a problem with less that the number of processors
required theoretically
@ A certain storage overhead is necessary for this algorithm as opposed to
the previous
o If optimality is not a concern (e.g., we have n processors anyway) then the
original algorithm is preferable

CS 467/567 (S. D. Bruda) Winter 2020 10/14

WHY PREFIX COMPUTATIONS?

@ Sequentially the prefix computation performs a “sweep” of the input
sequence; such a sweep can be accomplished in many other ways (some
times more efficient!)

@ A parallel algorithm however performs the “sweep” in an optimal amount
of time using prefix computations!

@ Case in point: maximum sum subsequence — given a sequence of (not
necessarily positive) integers (xp, X1, ..., Xp—1) find two indices u and v
such that x, + - - - + x, is maximal

Algorithm RAM_MAX_SUM (Xxp...n—1) returns u, v:

@ Maxseen — xo; u — 0; v — 0; Maxhere — xo; g — 0
© fori=0to ndo:

@ if Maxhere = 0 then Maxhere < Maxhere + x;
else Maxhere «— xj; q < i
@ if Maxseen < Maxhere then Maxseen < Maxhere; u « q; v « i

o One traversal of the sequence, linear complexity, also remember CS 327

CS 467/567 (S. D. Bruda) Winter 2020 11/14

WHY PREFIX COMPUTATIONS? (CONT’D)

@ A parallel algorithms solving the maximum sum subsequence cannot do
this kind of traversal efficiently (the traversal is inherently sequential)

@ We retort to prefix computations:

lnput | x;, | -4 2 6 -1 -7 4 2 -1
Prefixsum | s; | -4 -2 4 3 -4 0 2
Modified prefixsum | m; | 4 4 4 3 2 2 2 1
withmaxaso | g | 2 2 2 3 6 6 6
bi— mi—s;+Xx; | b 4 8 6 -1 -1 6 2 -1

o L «— maxogi<mbi = L = 8 (modified prefix sum, as above)
o u is the index at which L was found = u=1
e V<—a = v=2

@ Optimal algorithm for n/log n processors

CS 467/567 (S. D. Bruda) Winter 2020 12/14

POLYNOMIAL INTERPOLATION

@ Problem: Given n+ 1 pairs of numbers (x;, y;), 0 < i < n such that
Xo < X1 < --+ < Xp, find a polynomial h(x) such that h(x;) = y;,0<i<n

@ Newton’s interpolation method:

h(X) = yo-‘rY01(X—X0)+Yog(X—Xo)(X—X1)
44 Yon(X — Xo) (X — X1) -+ - (X — Xn)

Yitirj—1) = Yi+1)(i+i)
Xi — Xi+j

where Y,',' =Y and Y,'(,'_,_j) =

@ Solving the recursion for Yp;, 0 < i < nyields

Yo Y1 Yi
Yoi = + + it
o Xo1Xoz - Xoi ~ XioXiz--- X Xio Xit "'Xi(/'—1)

where Xj = x; — x; for all i # j

e Denominators can be computed using prefix sum with the scalar
multiplication operation

@ One prefix computation computes all the denominators for numerator y;

CS 467/567 (S. D. Bruda) Winter 2020 13/14

ARRAY PACKING

@ Problem: Given an array X of size n with some values therein labeled,
bring all the labeled values into contiguous positions

@ Sequential algorithm (optimal O(n) time): Two pointers in the array g and
r with initial values g =1and r=n

@ g advances to the right if X, is labeled
@ r advances to the left if X; is unlabeled
@ X, and X; are switched whenever Xj is unlabeled and X; is labeled

The labeled elements are all in adjacent positions in the first part of the
array as soonas q > r

CS 467/567 (S. D. Bruda) Winter 2020 14/14

ARRAY PACKING

@ Problem: Given an array X of size n with some values therein labeled,
bring all the labeled values into contiguous positions
@ Sequential algorithm (optimal O(n) time): Two pointers in the array g and
r with initial values g =1and r=n
@ g advances to the right if X, is labeled
@ r advances to the left if X; is unlabeled
@ X, and X; are switched whenever Xj is unlabeled and X; is labeled
The labeled elements are all in adjacent positions in the first part of the
array assoonas q=>=r
@ Parallel algorithm:
@ Create a secondary array S of size nsuch that S; = 1 if X; is labeled and
s; = 0 otherwise
@ Compute a prefix sum over S
© Move each labeled value X; to index S;

O(log n) running time on n/log n processors (optimal)

CS 467/567 (S. D. Bruda) Winter 2020 14/14

