CS 467/567: Introduction to Parallel Algorithms

Stefan D. Bruda

Winter 2020

- The Random Access Machine (RAM)

- Programming language: pseudocode

Parallel models: The PRAM

- The Parallel Random Access Machine (PRAM)

- Programming language: pseudocode
- Extra statement:
for $i=1$ to n do in parallel $\left\{\right.$ statements parameterized on processor $\left.p_{i}\right\}$

PARALLEL MODELS: INTERCONNECTION NETWORKS

- The Interconnection network

- Programming language: pseudocode
- Extra statements: send and receive (via point-to-point connections only)
- We charge one time unit for each elementary computation step (like in the sequential case)
- We also charge for moving data from one processor to another = routing steps
- Generally the cost of moving data depends on the distance between processors
- Routing cost for shared memory:
- Uniform analysis: constant time for memory access
- Discriminating analysis: $O(\log M)$ time for accessing one word in memory of size M
- Routing for interconnection networks: $O(1)$ time per direct link traversed
- Putting all these costs together we obtain the running time $t: \mathbb{N} \rightarrow \mathbb{N}$
- Usually worst case analysis

Performance of parallel algorithms cont'd

- Measures of parallel performance: speedup $S_{p}: \mathbb{N} \rightarrow \mathbb{N}$, efficiency $E_{p}: \mathbb{N} \rightarrow \mathbb{N}$, and cost $c_{p}: \mathbb{N} \rightarrow \mathbb{N}$

$$
S_{p}=\frac{t_{1}}{t_{p}} \quad E_{p}=\frac{S_{p}}{p} \quad c_{p}=p \times t_{p}
$$

- $t_{p}: \mathbb{N} \rightarrow \mathbb{N}$ is the time taken by the p-processor algorithm being analyzed to solve the problem
- $t_{1}: \mathbb{N} \rightarrow \mathbb{N}$ is the time taken by the best known sequential algorithm to solve the same problem
- Speedup and efficiency are usually (but not always) invariable with the input size

Theorem (Speedup theorem)

In the classical theory of parallel algorithms $S_{p} \leqslant p$ and so $E_{p} \leqslant 1$

- A parallel algorithm with $S_{p}=p$ (or $E_{p}=1$, or $c_{p}=t_{1}$) is optimal
- If $S_{p}=O(1)$ then the running time of the parallel algorithm is just as bad as the running time of a sequential algorithm
- This is believed to happen to all the P-complete problems

Performance of parallel algorithms cont'd

- Another important measure is the slowdown = effect on running time of reducing the number of processors

Theorem (Slowdown theorem)

In the classical theory of parallel algorithms if a certain computation can be performed with p processors in time t_{p} and with $q<p$ processors in time t_{q} then $t_{p} \leqslant t_{q} \leqslant t_{p}+p t_{p} / q$

- Number of processors also important
- Number of processors can or cannot be optimal
- It is possible that an analysis of the algorithm reveals that a number of processors are idle most of the time and so can be discarded without affecting the performance
- Sometimes the optimal running time can only be achieved with a certain number of processors
- Sometimes reducing the number of processors below a certain threshold results in an unacceptable slowdown

Parallel models: Combinational circuits

- Processors capable of performing the usual logic and arithmetic operations on $O(\log n)$-sized words but having only a constant number of internal registers
- The processors are connected to each other as vertices in a directed acyclic graph
- Vertices with no incoming edges are input processors
- Vertices with no outgoing edges are output processors
- The processors can be viewed as aligned into columns, one column per distance from the input nodes
- It is convenient (though not strictly necessary) to have all the output vertices in the rightmost column
- Performance measures for combinational circuits:
- The depth of the circuit (or number of columns)
- The width of the circuit (the number of processors in the largest column)

PARALLEL MODELS: COMBINATIONAL CIRCUITS

- Processors capable of performing the usual logic and arithmetic operations on $O(\log n)$-sized words but having only a constant number of internal registers
- The processors are connected to each other as vertices in a directed acyclic graph
- Vertices with no incoming edges are input processors
- Vertices with no outgoing edges are output processors
- The processors can be viewed as aligned into columns, one column per distance from the input nodes
- It is convenient (though not strictly necessary) to have all the output vertices in the rightmost column
- Performance measures for combinational circuits:
- The depth of the circuit (or number of columns)
- The width of the circuit (the number of processors in the largest column)
- The combinational circuit represents the unfolded computation of an "usual" parallel machine (depth = running time; width = number of processors; cost $=$ depth \times width)

PARALLEL PREFIX COMPUTATIONS

- Problem: Given an array x with n values, find all the prefix sums $s_{i}=\sum_{k=0}^{i} x_{i}, 0 \leqslant i<n$, where the summation is done according to an associative binary operation \circ
Algorithm RAM_PREFIX $\left(x_{0 \ldots n-1}\right)$ returns $s_{0 \ldots n-1}$:
(1) $s_{0} \leftarrow x_{0}$
(2) for $i=1$ to $n-1$ do:
(1) $s_{i} \leftarrow s_{i-1} \circ x_{i}$

PARALLEL PREFIX COMPUTATIONS

- Problem: Given an array x with n values, find all the prefix sums $s_{i}=\sum_{k=0}^{i} x_{i}, 0 \leqslant i<n$, where the summation is done according to an associative binary operation \circ
Algorithm RAM_PREFIX $\left(x_{0 \ldots n-1}\right)$ returns $s_{0 \ldots n-1}$:
(1) $S_{0} \leftarrow x_{0}$
(2) for $i=1$ to $n-1$ do:
(1) $s_{i} \leftarrow s_{i-1} \circ x_{i}$

Algorithm PRAM_Prefix ($x_{0 \ldots n-1}$) returns $s_{0 \ldots n-1}$:
(1) for $i=0$ to $n-1$ do in parallel:
(1) $s_{i} \leftarrow x_{i}$
(2) for $j=0$ to $\log n-1$ do:
(1) for $i=2^{j}$ to $n-1$ do in parallel:
(2) $s_{i} \leftarrow s_{i-2 j} \circ s_{i}$

- Sequential time: $t_{1}(n)=O(n)$ (also a lower bound); parallel time:
$t_{n}(n)=O(\log n)$
- Cost: $c_{n}(n)=O(n \log n)$ (PRAM_Prefix is not optimal)

AN OPTIMAL PRAM ALGORITHM FOR PREFIX COMPUTATIONS

- We exploit the associativity of o
- Let $k=\log n$ and $m=n / k$ (rounded); we use an m-processor algorithm
- All the processors $P_{i}, 0 \leqslant i<m$ use in parallel RAM_Prefix to compute he prefix sums $s_{i k}, s_{i k+1}, \ldots, s_{(i+1)(k-1)}$, where $s_{i k+j}=x_{i k} \circ x_{i k+1} \circ \cdots \circ x_{i k+j}$
- $O(k)=O(\log n)$ time
- Now PRAM_Prefix is used on all the processors to compute the prefix sum of the sequence $\left\langle s_{k-1}, s_{2 k-1}, \ldots, s_{n-1}\right\rangle$; the result is put back into $\left\langle s_{k-1}, s_{2 k-1}, \ldots, s_{n-1}\right\rangle$
- At the end of this step $s_{i k-1}$ will be replaced with $s_{k-1} \circ s_{2 k-1} \circ \cdots \circ s_{i k-1}$
- $O(\log m)=O(\log (n / \log n))$ time
- Fnally, all processors $P_{i}, 1 \leqslant i<m$ perform sequentially $s_{i k+j} \leftarrow s_{i k-1} \circ s_{i k+j}$ for all $0 \leqslant j \leqslant k-2$
- Executed sequentially by all processors (except P_{0})
- $O(k)=O(\log n)$ time

AN OPTIMAL PRAM ALGORITHM FOR PREFIX COMPUTATIONS (CONT'D)

- t(n) $=O(\log n)+O(\log (n / \log n))+O(\log n)=O(\log n)$ and so $c(n)=O(n)$
- The algorithm also illustrated how an m-processor PRAM can be made to run an algorithm designed to run on n processors, $n>m$
- This "self-simulation" is extremely useful in practice
- It shows how to solve a problem with less that the number of processors required theoretically
- A certain storage overhead is necessary for this algorithm as opposed to the previous
- If optimality is not a concern (e.g., we have n processors anyway) then the original algorithm is preferable

WHY PREFIX COMPUTATIONS?

- Sequentially the prefix computation performs a "sweep" of the input sequence; such a sweep can be accomplished in many other ways (some times more efficient!)
- A parallel algorithm however performs the "sweep" in an optimal amount of time using prefix computations!
- Case in point: maximum sum subsequence - given a sequence of (not necessarily positive) integers $\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$ find two indices u and v such that $x_{u}+\cdots+x_{v}$ is maximal
Algorithm RAM_MAX_Sum ($x_{0 \ldots, n-1}$) returns u, v :
(ㅇ) Maxseen $\leftarrow x_{0} ; u \leftarrow 0 ; v \leftarrow 0$; Maxhere $\leftarrow x_{0} ; q \leftarrow 0$
(2) for $i=0$ to n do:
(1) if Maxhere $\geqslant 0$ then Maxhere \leftarrow Maxhere $+x_{i}$ else Maxhere $\leftarrow x_{i} ; q \leftarrow i$
(2) if Maxseen $<$ Maxhere then Maxseen \leftarrow Maxhere; $u \leftarrow q ; v \leftarrow i$
- One traversal of the sequence, linear complexity, also remember CS 327

WHY PREFIX COMPUTATIONS? (CONT'D)

- A parallel algorithms solving the maximum sum subsequence cannot do this kind of traversal efficiently (the traversal is inherently sequential)
- We retort to prefix computations:

Input	x_{i}	-4	2	6	-1	-7	4	2	-1
Prefix sum	s_{i}	-4	-2	4	3	-4	0	2	1
Modified prefix sum	m_{i}	4	4	4	3	2	2	2	1
with max as \circ	a_{i}	2	2	2	3	6	6	6	7
$b_{i} \leftarrow m_{i}-s_{i}+x_{i}$	b_{i}	4	8	6	-1	-1	6	2	-1

- $L \leftarrow \max _{0 \leq i<m} b_{i} \quad \Rightarrow \quad L=8$ (modified prefix sum, as above)
- u is the index at which L was found $\quad \Rightarrow \quad u=1$

$$
\text { - } v \leftarrow a_{u} \quad \Rightarrow \quad v=2
$$

- Optimal algorithm for $n / \log n$ processors

POLYNOMIAL INTERPOLATION

- Problem: Given $n+1$ pairs of numbers $\left(x_{i}, y_{i}\right), 0 \leqslant i \leqslant n$ such that $x_{0}<x_{1}<\cdots<x_{n}$, find a polynomial $h(x)$ such that $h\left(x_{i}\right)=y_{i}, 0 \leqslant i \leqslant n$
- Newton's interpolation method:

$$
\begin{aligned}
h(x)= & y_{0}+Y_{01}\left(x-x_{0}\right)+Y_{02}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+Y_{0 n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) \\
\text { where } Y_{i i}= & y_{i} \text { and } Y_{i(i+j)}=\frac{Y_{i(i+j-1)}-Y_{(i+1)(i+j)}}{x_{i}-x_{i+j}}
\end{aligned}
$$

- Solving the recursion for $Y_{0 i}, 0 \leqslant i \leqslant n$ yields

$$
Y_{0 i}=\frac{y_{0}}{X_{01} X_{02} \cdots X_{0 i}}+\frac{y_{1}}{X_{10} X_{12} \cdots X_{1 i}}+\cdots+\frac{y_{i}}{X_{i 0} X_{i 1} \cdots X_{i(j-1)}}
$$

where $X_{i j}=x_{i}-x_{j}$ for all $i \neq j$

- Denominators can be computed using prefix sum with the scalar multiplication operation
- One prefix computation computes all the denominators for numerator y_{j}

ARRAY PACKING

- Problem: Given an array X of size n with some values therein labeled, bring all the labeled values into contiguous positions
- Sequential algorithm (optimal $O(n)$ time): Two pointers in the array q and r with initial values $q=1$ and $r=n$
(1) q advances to the right if X_{q} is labeled
(2) r advances to the left if X_{r} is unlabeled
(3) X_{q} and X_{r} are switched whenever X_{q} is unlabeled and X_{r} is labeled

The labeled elements are all in adjacent positions in the first part of the array as soon as $q \geqslant r$

ARRAY PACKING

- Problem: Given an array X of size n with some values therein labeled, bring all the labeled values into contiguous positions
- Sequential algorithm (optimal $O(n)$ time): Two pointers in the array q and r with initial values $q=1$ and $r=n$
(1) q advances to the right if X_{q} is labeled
(2) r advances to the left if X_{r} is unlabeled
(3) X_{q} and X_{r} are switched whenever X_{q} is unlabeled and X_{r} is labeled

The labeled elements are all in adjacent positions in the first part of the array as soon as $q \geqslant r$

- Parallel algorithm:
(1) Create a secondary array S of size n such that $S_{i}=1$ if X_{i} is labeled and $s_{i}=0$ otherwise
(2) Compute a prefix sum over S
(3) Move each labeled value X_{i} to index S_{i}
$O(\log n)$ running time on $n / \log n$ processors (optimal)

