
CS 467/567: Divide and Conquer on the PRAM

Stefan D. Bruda

Winter 2023

BINARY SEARCH

Problem: Given a sequence S1..n sorted in increasing order and a value
x , find the subscript k such that Si “ x
If n processors are available the problem can be solved in constant time:

1 All processors read x
2 Each processor Pi compares x with Si
3 All processors Pi (if any) that found x “ Si write j into k using min as

combining operator

Good running time but far from optimal
Other CW models (Priority, Arbitrary, etc.) can also be used to break ties

Naı̈ve divide and conquer approach for N ă n processors:
1 Divide the sequence S into N roughly equally sized subsequences (of length

Opn{Nq each)
2 Each processor performs a sequential binary search to search for x in one

subsequence
3 Those procesors (if any) that found x write the respective index into k using

min as combining operator

Oplogpn{Nqq running time Ñ faster than the sequential algorithm but not
considerably so

CS 467/567 (S. D. Bruda) Winter 2023 1 / 11

BINARY SEARCH

Problem: Given a sequence S1..n sorted in increasing order and a value
x , find the subscript k such that Si “ x
If n processors are available the problem can be solved in constant time:

1 All processors read x
2 Each processor Pi compares x with Si
3 All processors Pi (if any) that found x “ Si write j into k using min as

combining operator

Good running time but far from optimal
Other CW models (Priority, Arbitrary, etc.) can also be used to break ties

Naı̈ve divide and conquer approach for N ă n processors:
1 Divide the sequence S into N roughly equally sized subsequences (of length

Opn{Nq each)
2 Each processor performs a sequential binary search to search for x in one

subsequence
3 Those procesors (if any) that found x write the respective index into k using

min as combining operator

Oplogpn{Nqq running time Ñ faster than the sequential algorithm but not
considerably so

CS 467/567 (S. D. Bruda) Winter 2023 1 / 11

PARALLEL BINARY SEARCH

N processors used to perform an N ` 1-way (rather than binary) search
Sequence of stages; in the first stage all the sequence is under
consideration, in subsequent stages only a subsequence will be under
consideration
At each stage the sequence under consideration is split into N ` 1
subsequences

1 Each processor Pi compares x with the elements s at the right boundary of
the i-th subsequence

2 If x ă s then all the elements in the i ` 1-st and higher subsequences can
be discarded

3 If x ą s then all the elements in the i-th and lower subsequences can be
discarded

4 If x “ s then the index has been found

This process reduces the sequence under considertion N times rather
than just halving it (like in the sequential case)
The overall running time is thus OplogN nq

CS 467/567 (S. D. Bruda) Winter 2023 2 / 11

MERGING

Problem: Given two sequences of numbers (or more generally
comparable values) A “ ⟨a1,a2, . . . ,ar ⟩ and B “ ⟨b1,b2, . . . ,bs⟩ sorted in
nondecreasing order, compute the sequence C “ ⟨c1, c2, . . . , cr`s⟩ such
that each ci belongs to either A or B, ech ai and bi appear exactly once in
C, and the sequence C is sorted in nondecreasing order

Algorithm RAM-MERGEpA,Bq returns C:
1 i Ð 1, j Ð 1
2 for k “ 1 to r ` s do

1 if ai ă bj then ck Ð ai , i Ð i ` 1
2 else ck Ð bj , j Ð j ` 1

Opnq running time (optimal)

Requirements for the parallel algorithm:
Sublinear and adaptive number of processors
Running time substantially smaller than the sequential running time, and
also adaptive
Optimal

CS 467/567 (S. D. Bruda) Winter 2023 3 / 11

PRAM MERGE

Assume (without loss of generality) that r ď s

Algorithm PRAM-MERGEpA,Bq returns C:
Select N ´ 1 elements from A that divide A into N sequences of
approximately equal size; call this sequence A1 “ ⟨a1

1,a
1
2, . . .⟩. Similarly

find the sequence B1 “ ⟨b1
1,b

1
2, . . .⟩ that divide B into N sequences of

roughly the same size (constant time):
1 for i “ 1 do in parallel a1

i Ð ai⌈r{N⌉, b1
i Ð bi⌈s{N⌉

Merge A1 and B1 into a sequence of triples V “ ⟨v1, v2, . . . v2N´2⟩, where
each triple consists of an element of A1 or B1, its position in A1 or B1, and
the name of the sequence of origin (A or B) (OplogNq time):

1 for i “ 1 to N do in parallel
1 Processor Pi uses binary search on B1 to find the smallest j such that a1

i ă b1
j

2 if j exists then vi`j´1 Ð pa1
i , i.Aq else vi`N´1 Ð pa1

i , i,Aq

2 for i “ 1 to N do in parallel
1 Processor Pi uses binary search on A1 to find the smallest j such that b1

i ă a1
j

2 if j exists then vi`j´1 Ð pb1
i , i.Bq else vi`N´1 Ð pb1

i , i,Aq

CS 467/567 (S. D. Bruda) Winter 2023 4 / 11

PRAM MERGE (CONT’D)

Each processor merges and inserts into C the elements of two
subsequences, one from A and one from B. The indices of the two
elements (one in A and one in B) at which each processor begins
merging are first computed and stored in an array Q of pairs (Opr ` s{Nq

time):
1 Q1 Ð p1, 1q
2 for i “ 2 to N do in parallel

1 if v2i´2 “ pa1
k , k ,Aq then processor Pi

uses binary search on B to find the smallest j such that bj ą a1
k

Qi Ð pk⌈r{N⌉, jq
2 else processor Pi

uses binary search on A to find the smallest j such that aj ą b1
k

Qi Ð pj, k⌈s{N⌉q

3 for i “ 1 to N do in parallel
1 Processor Pi uses RAM-MERGE and Qi “ px , yq to merge two subsequences

beginning at ax and by and places the result in C beginning at index x ` y ´ 1.
The merge continues until either
paq an element larger than or equal to the firt component of v2i in each of A and
B (when i ď N ´ 1), or
pbq no elements are left in either A or B (when i “ N)

Running time: Opn{N ` log nq Ñ optimal algorithm for N ď n{ log n
CS 467/567 (S. D. Bruda) Winter 2023 5 / 11

LIGHTNING FAST PRAM SORTING

Algorithm CRCW-SORTpS1..nq returns S1
1..n:

1 for i “ 1 to n do in parallel
for j “ 1 to n do in parallel

1 if si ą sj _ si “ sj ^ i ą j
2 then Pij writes 1 in ci using ` as combining operation
3 else Pij writes 0 in ci using ` as combining operation

2 for i “ 1 to n do in parallel
1 Pi1 stores Si into S1

1`ci

Method called enumeration or rank sorting
Contant running time
Opn2q processors Ñ Opn2q cost (not optimal)
Likely of not a great practical value (number of processors very high)

CS 467/567 (S. D. Bruda) Winter 2023 6 / 11

ENUMERATION SORTING ON THE CREW PRAM

What about the CREW PRAM?
Can still compare one pair of values psi , sjq in each processor, but we
cannot write all the results ci in a single memory location

Solution:
1 If si ą sj _ si “ sj ^ i ą j then processor Pij writes 1 into cij ; otherwise Pij

writes 0 into cij
2 Set ci to

∑n
j“1 cij then continue as in the CRCW algorithm

Extra step: ci Ð
∑n

j“1 cij

Keep adding (in parallel) pairs of values until a single value remains
Oplog nq time using n processors

Overall running time: Oplog nq using Opn2q processors

CS 467/567 (S. D. Bruda) Winter 2023 7 / 11

ENUMERATION SORTING ON THE CREW PRAM

What about the CREW PRAM?
Can still compare one pair of values psi , sjq in each processor, but we
cannot write all the results ci in a single memory location
Solution:

1 If si ą sj _ si “ sj ^ i ą j then processor Pij writes 1 into cij ; otherwise Pij

writes 0 into cij
2 Set ci to

∑n
j“1 cij then continue as in the CRCW algorithm

Extra step: ci Ð
∑n

j“1 cij

Keep adding (in parallel) pairs of values until a single value remains
Oplog nq time using n processors

Overall running time: Oplog nq using Opn2q processors

CS 467/567 (S. D. Bruda) Winter 2023 7 / 11

OPTIMAL SORTING ON THE CREW PRAM

Algorithm CREW-SORTpS1..nq returns S1..n:
1 Distribute equal size subsequences of S to the N processors. Each

processor will then sort its subsequence sequentially (Oppn{Nq logpn{Nqq

time)
2 Keep merging pairwise adjacent subsequences (in parallel) until one

sequence (of length n) is obtained (using PRAM-MERGE)
N{k subsequences (of length kn{N each) to merge in iteration k
Allocate Opkq processor per pair of subsequences for each merge Ñ

Opn{N ` logpkn{Nqq “ Opn{N ` log nq time per iteration
OplogNq iterations Ñ Oppn{Nq logN ` log n logNq overall time

Running time: Oppn{Nq log n ` log2 nq

Cost: Opn log n ` N log2 nq Ñ optimal for N ď n{ log n

We can also sort faster (Oplog nq time with Opnq processors, still optimal),
but such an algorithm does not scale well

CS 467/567 (S. D. Bruda) Winter 2023 8 / 11

OPTIMAL SORTING ON THE CREW PRAM

Algorithm CREW-SORTpS1..nq returns S1..n:
1 Distribute equal size subsequences of S to the N processors. Each

processor will then sort its subsequence sequentially (Oppn{Nq logpn{Nqq

time)
2 Keep merging pairwise adjacent subsequences (in parallel) until one

sequence (of length n) is obtained (using PRAM-MERGE)
N{k subsequences (of length kn{N each) to merge in iteration k
Allocate Opkq processor per pair of subsequences for each merge Ñ

Opn{N ` logpkn{Nqq “ Opn{N ` log nq time per iteration
OplogNq iterations Ñ Oppn{Nq logN ` log n logNq overall time

Running time: Oppn{Nq log n ` log2 nq

Cost: Opn log n ` N log2 nq Ñ optimal for N ď n{ log n

We can also sort faster (Oplog nq time with Opnq processors, still optimal),
but such an algorithm does not scale well

CS 467/567 (S. D. Bruda) Winter 2023 8 / 11

CONVEX HULL ON THE PRAM

Algorithm PRAM-CONVEX-HULLpn,Qq:
1 Sort the points in Q according to their x coordinate
2 Partition Q into n1{2 sets Q1, Q2, . . . , Qn1{2 of n1{2 points each such that

the sets are separated by vertical lines and Qi is to the left of Qj iff i ă j
3 for i “ 1 to n1{2 do in parallel

1 if |Qi | ă 3 then CHpQi q Ð Qi
2 else CHpQi q Ð PRAM-CONVEX-HULLpn1{2,Qi q

4 return PRAM-MERGE-CHpCHpQ1q,CHpQ2q, . . . ,CHpQn1{2 qq

Let the algorithm use Opnq processors
Step 1 doable in Oplog nq time
Step 2 takes constant time (the sets Qi are all subsequences of Q)
Step 4 takes Oplog nq time
Overall the running time is tpnq “ tpn1{2q ` c log n and so tpnq “ Oplog nq

Therefore cost is Opn log nq Ñ optimal (non-output sensitive complexity)

CS 467/567 (S. D. Bruda) Winter 2023 9 / 11

CONVEX HULL ON THE PRAM (CONT’D)
Algorithm PRAM-MERGE-CHpCHpQ1q,CHpQ2q, . . . ,CHpQn1{2 qq:

Let u be the leftmost point of CHpQ1q and v the rightmost point of
CHpQn1{2 q

Identify the upper hull:
1 Assign Opn1{2

q processors to each CHpQi q
2 Each processor assigned to CHpQi q finds the upper tangent common

between CHpQi q and CHpQj q for some i ‰ j
3 Between all common tangents between CHpQi q and CHpQj q, j ă i let Li

(tangent with CHpQi q at point li) be the tangent with the smallest slope
4 Between all common tangents between CHpQi q and CHpQj q, j ą i let Ri

(tangent with CHpQi q at point ri) be the tangent with the smallest slope
5 If the angle formed by Li and Ri is smaller than 180 degrees then no points

from CHpQi q are in the upper hull; otherwise include in the upper hull all the
points between li and ri (inclusive)

6 Identify the upper hull as all the points from u to r1, then all the points
identified above, then all the points from rn1{2 to v (inclusive)

Identify the lower hull (similar to the upper hull)
The lower hullis identified as above but this time u and v are excluded

Return the union of the upper and lower hulls (array packing)
CS 467/567 (S. D. Bruda) Winter 2023 10 / 11

CONVEX HULL ON THE PRAM (CONT’D)

Computing the upper tan-
gent of CHpQiq and CHpQjq

in Oplog nq time:
Let s and w be the
middle points in the
(sorted) upper hulls
from CHpQiq and
CHpQjq

If sw is the upper
tangent of CHpQiq and
CHpQjq then we are
done (Case a)
Otherwise repeat from
Step 1 but excluding
at least half the points
of at least one upper
hull (Cases b–h)

ws

s

w

s

w

(f)

s

w

(e)

(d)

s

w

(c)

s w

(a) (b)

s

w

(h)

w

s

(g)

CS 467/567 (S. D. Bruda) Winter 2023 11 / 11

