# CS 467/567: Algorithms for Interconnection Networks 

Stefan D. Bruda

Winter 2023

## PRAM vs. INTERCONNECTION NETWORKS

- The PRAM is a very powerful model, rarely realizable in practive
- It is however important for the theory of algorithms
- Lower bounds are particularly strong on the PRAM
- Surprising equivalences to other, realistic models
- Most massively parallel machines are laid out as networks
- From the point of view of the theory of algorithms interconnection networks typically have fixed topology
- An interconnection network is therefore a family of graphs with RAM processors (including storage) as nodes and (direct) data links as edges
- The number of processors (nodes) may vary, but the topology remains the same
- Possible topology: linear array, mesh, tree, hypercube, fully connected (not realistic), etc.
- Note however that models with variable topology also exist


## LINEAR ARRAYS AND ON-LINE SORTING

- In a linear array with $n$ procesors, procesor $P_{i}$ is (bidirectionally) connected to processor $P_{i+1}$ for all $1 \leqslant i<n$
- The simplest network topology, weakest model
- Problem: Sort in nondecreasing order a sequence $S=\left\langle S_{1}, S_{2}, \ldots, S_{n}\right\rangle$ which is available on-line, meaning that each $S_{i}$ becomes available at time $i, 1 \leqslant i \leqslant n$
- Assume that $P_{1}$ is the "input processor" where input data becomes available
- $\Omega(n)$ lower bound for the running time no matter how many processors are available
- Indeed, this is how much time it takes for all the data to arrive
- Useful basic operation: Compare-EXChange $\left(P_{i}, P_{i+1}\right)$
- Compares the designated values held by $P_{i}$ and $P_{i+1}$ and possibly exchanges them, so that the smaller value is placed in $P_{i}$ and the largest in $P_{i+1}$
- $O(1)$ computation and communication steps


## SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:
(1) $P_{1}$ reads $S_{1}$
(2) for $j=2$ to $n$ do
(1) for $i=1$ to $j-1$ do in parallel $P_{i}$ sends its designated value to $P_{i+1}$
(2) $P_{1}$ reads $s_{j}$
(3) for all odd $i<j$ do in parallel Compare-EXChANGE $\left(P_{i}, P_{i+1}\right)$
(3) for $j=1$ to $n$ do in parallel
(1) $P_{1}$ produces its datum as output
(2) for $i=2$ to $n-j+1$ do in parallel $P_{i}$ sends its datum to $P_{i-1}$
(3) for all odd $i<n-j$ do in parallel Compare-EXChANGE $\left(P_{i}, P_{i+1}\right)$

## SORTING BY COMPARISON-EXCHANGE

Algorithm Sort-Comparison-EXChANGE:
(1) $P_{1}$ reads $S_{1}$
(2) for $j=2$ to $n$ do
(1) for $i=1$ to $j-1$ do in parallel $P_{i}$ sends its designated value to $P_{i+1}$
(2) $P_{1}$ reads $s_{j}$
(3) for all odd $i<j$ do in parallel Compare-EXChANGE $\left(P_{i}, P_{i+1}\right)$
(3) for $j=1$ to $n$ do in parallel
(1) $P_{1}$ produces its datum as output
(2) for $i=2$ to $n-j+1$ do in parallel $P_{i}$ sends its datum to $P_{i-1}$
(3) for all odd $i<n-j$ do in parallel Compare-EXCHANGE $\left(P_{i}, P_{i+1}\right)$

- Linear (optimal) running time, but $O\left(n^{2}\right)$ cost

Maintain the PRAM idea of several merges overlapping

- Now the merges are pipelined in a real pipeline
- We actually need two pipelines, so conceptually we consider that there are two links (top and bottom) between processors

Mergesort on $r+1$ processors, with $r=\log n$ :

- Processor $P_{1}$ :
(1) Reads $s_{1}$ from the input sequence; $i \leftarrow 1$
(2) for $i=2$ to $n$ do
(1) if $j$ is odd then place $s_{i-1}$ on the top link
(2) else place $s_{i-1}$ on the bottom link
(3) Reads $s_{i}$ from the input sequence; $i \leftarrow j+1$
(3) Plase $s_{n}$ on the bottom link


## SORTING BY MERGING (CONT'D)

- Processor $P_{i}, 2 \leqslant i \leqslant r$ :
(1) $j \leftarrow 1, k \leftarrow 1$
(2) while $k<n$ do
if the top input buffer contains $2^{i-2}$ values and the bottom input buffer contains one value then
(1) for $m=1$ to $2^{i-1}$ do
(a) Let $x$ be the largest of the first elements from the top and bottom buffers
(b) Remove $x$ from its buffer
(c) if $j$ is odd then place $x$ on the top link
(d) else place $x$ on the bottom link
(2) $j \leftarrow j+1, k \leftarrow k+2^{i-1}$
- Processor $p_{r+1}$ :
(1) if the top input buffer contains $2^{r-1}$ values and the bottom input buffer contains one value then
(1) Let $x$ be the largest of the first elements from the top and bottom buffers
(2) Remove $x$ from its buffer and produce it as output
- $P_{i}$ needs $2^{i-2}+1$ values so it starts at time $2^{i-2}+1$ after $P_{i-1}$
- $P_{i}$ produces its first output at time $1+\left(2^{0}+1\right)+\left(s^{1}+1\right)+\cdots+\left(2^{i-2}+1\right)$ $=2^{i-1}+i-1$ and its last output $n-1$ time units later
- Running time $2^{r}+r+(n-1)=2 n+\log n-1=O(n) ;$ cost $O(n \log n)$


## Sorting (OFF-LINE)

- Lower bound assuming that the input data is distributed to all processors: $\Omega(N)$ time (and so $\Omega\left(N^{2}\right)$ cost)
- In the worst case one datum must traverse the diameter of the network
- Diameter: the maximum number of links on the shortest path between two processors
- Therefore a bubble sort variant is optimal

Algorithm TRANSPOSITION-SORT:
(1) for $j=0$ to $N-1$ do for $i=0$ to $N-1$ do in parallel
(1) if $i \bmod 2=j \bmod 2$ then Compare-Exchange $\left(P_{i}, P_{i+1}\right)$

## More complex networks

- Biggest disadvantage of the linear array: largest possible diameter
- The two-dimensional array (or mesh) provides a considerably smaller diameter while maintaining many of the nice properties of the linear array
- Simple theoretically, appealing in practice
- Fixed and small maximum degree for nodes (4)
- Regular and modular topology
- In a mesh of $N$ processors each processor $P_{i j}$ is connected to $P_{(i+1) j}$ and $P_{i(j+1)}, 1 \leqslant i, j<N^{1 / 2}$
- $2 N^{1 / 2}-2$ diameter, considerably smaller than for the linear array
- Still the diameter is quite large


## More complex networks

- Biggest disadvantage of the linear array: largest possible diameter
- The two-dimensional array (or mesh) provides a considerably smaller diameter while maintaining many of the nice properties of the linear array
- Simple theoretically, appealing in practice
- Fixed and small maximum degree for nodes (4)
- Regular and modular topology
- In a mesh of $N$ processors each processor $P_{i j}$ is connected to $P_{(i+1) j}$ and $P_{i(j+1)}, 1 \leqslant i, j<N^{1 / 2}$
- $2 N^{1 / 2}-2$ diameter, considerably smaller than for the linear array
- Still the diameter is quite large
- Good compromise between vertex degree and network diameter: the hypercube
- For some integers $i$ and $b$, let $i^{(b)}$ if the binary representations of $i$ and $i^{(b)}$ differ only in the $b$ position
- The processors $P_{1}, P_{2}, \ldots, P_{N}$ for $N=2^{g}, g \geqslant 1$ are arranged in a $g$-dimensional hypercube whenever each processor $P_{i}$ is connected to exactly all the processors $P_{i(b)}, 0 \leqslant b<g$
- $O(\log N)$ for both degree and diameter


## MATRIX MULTIPLICATION ON THE HYPERCUBE

- Need to compute $c_{j k}=\sum_{i=0}^{n-1} a_{j i} \times b_{i k}$ for $0 \leqslant j, k<n$
- Straightforward sequential algorithm: $O\left(n^{3}\right)$ running time
- Best known sequential algorithm: $O\left(n^{2+\varepsilon}\right)$ running time, $0<\varepsilon<0.38$
- For input size $n=2^{g}$ we use a hypercube with $N=n^{3}=2^{3 g}$ processors
- Imagine the processors conceptually arranged in an $n \times n \times n$ array such that $P_{r}$ (or $\left.P_{(i, j, k)}\right)$ occupies position $(i, j, k)$ with $r=i n^{2}+j n+k$

$$
r=\underbrace{r_{3 g-1} r_{3 g-2} \ldots r_{2 q}}_{i} \underbrace{r_{2 q-1} r_{2 q-2} \ldots r_{q}}_{j} \underbrace{r_{q-1} r_{q-2} \ldots r_{0}}_{k}
$$

- Each set of processors that agrees with each other on one coordinate [two coordinates] form a hypercube with $n^{2}$ processors [ $n$ processors]
- Processors $P_{(i, j, k)}, 0 \leqslant j, k<n$ form a "layer" for $n$ layers overall
- Designated registers for $P_{r} / P_{(i, j, k)}: A_{r}, B_{r}, C_{r} / A_{(i, j, k)}, B_{(i, j, k)}, C_{(i, j, k)}$
- Input available in $A_{(0, j, k)}\left(A_{(0, j, k)}=a_{j k}\right)$ and $B_{(0, j, k)}\left(B_{(0, j, k)}=b_{j k}\right)$
- Output produced in $C_{(0, j, k)}\left(C_{(0, j, k)}=c_{j k}\right)$
- The algorithm performs all the arithmetic calculations in constant time, but still need $O(\log n)$ time for data distribution (not optimal)


## MATRIX MULTIPLICATION (CONT’D)

Algorithm Matrix-multiplication $\left(\boldsymbol{A}=\left(a_{i j}\right)_{0 \leqslant i, j \leqslant n}, \boldsymbol{B}=\left(b_{i j}\right)_{0 \leqslant i, j \leqslant n}\right)$
returns $C=\left(c_{i j}\right)_{0 \leqslant i, j \leqslant n}$ :
(1) Data distribution: $A$ and $B$ (layer 0 ) are distributed to the other processors so that $P_{(i, j, k)}$ stores $a_{j i}$ and $b_{i k}$
(0) for $m=3 g-1$ down to $2 g$ do
for all $0 \leqslant r<N \wedge r_{m}=0$ do in parallel $A_{r(m)} \leftarrow A_{r} ; B_{r(m)} \leftarrow B_{r}$ // result: $A_{(i, j, k)}=a_{j k}$ and $B_{(i, j, k)}=b_{j k}, 0 \leqslant i<n$
(2) for $m=g-1$ down to 0 do
for all $0 \leqslant r<N \wedge r_{m}=r_{2 g+m}$ do in parallel $A_{r(m)} \leftarrow A_{r}$
// $A_{(i, j, i)} \rightarrow A_{(i, j, k)} ;$ result: $A_{(i, j, k)}=a_{j i}, 0 \leqslant k<n$
(0) for $m=2 g-1$ down to $g$ do
for ann $0 \leqslant r<N \wedge r_{m}=r_{g+m}$ do in parallel $B_{r(m)} \leftarrow B_{r}$
$/ / B_{(i, i, k)} \rightarrow B_{(i, j, k)} ;$ result: $B_{(i, j, k)}=a_{j k}, 0 \leqslant i<n$
(2) Term computation: Each $P_{(i, j, k)}$ computes $C_{(i, j, k)} \leftarrow A_{(i, j, k)} \times B_{(i, j, k)}$ // result: $C_{(i, j, k)}=a_{j i} \times b_{i k}$
(3) Summation: For $0 \leqslant j, k<n$ compute $C_{(0, j, k)} \leftarrow \sum_{i=0}^{n-1} C_{(i, j, k)}$

## CONNECTED COMPONENTS IN GRAPHS

- Connectivity matrix: given an adjacency matrix $A=\left(a_{i j}\right)_{0 \leqslant i, j<n}$ defining a graph $G=(\{0,1, \ldots, n\}, E)\left(a_{i j}=1\right.$ if $(i, j) \in E$ and 0 otherwise $)$, the connectivity matrix $C=\left(c_{i j}\right)_{0 \leqslant i, j<n}$ is defined such that $c_{i j}=1$ if there exists a path from $i$ to $j$ and 0 otherwise
- The connectivity matrix can be computed as follows: $C=A^{\prime n}$, where $A^{\prime}=\left(a_{i j}^{\prime}\right)_{0 \leqslant i, j<n}$ with $a_{i i}^{\prime}=1$ and $a_{i j}^{\prime}=a_{i j}$ for all $i \neq j$
- C-style booleans can use plain matrix multiplication; true booleans require multiplication with $\wedge$ instead of $\times$ and $\vee$ instead of +
- Repeat multiplications on the hypercube do not necessitate data redistribution, since the result of the previous multiplication is in the right place for the next multiplication
- We can compute $C$ using $O(\log n)$ matrix multiplications


## CONNECTED COMPONENTS IN GRAPHS

- Connectivity matrix: given an adjacency matrix $A=\left(a_{i j}\right)_{0 \leqslant i, j<n}$ defining a graph $G=(\{0,1, \ldots, n\}, E)\left(a_{i j}=1\right.$ if $(i, j) \in E$ and 0 otherwise $)$, the connectivity matrix $C=\left(c_{i j}\right)_{0 \leqslant i, j<n}$ is defined such that $c_{i j}=1$ if there exists a path from $i$ to $j$ and 0 otherwise
- The connectivity matrix can be computed as follows: $C=A^{\prime n}$, where $A^{\prime}=\left(a_{i j}^{\prime}\right)_{0 \leqslant i, j<n}$ with $a_{i i}^{\prime}=1$ and $a_{i j}^{\prime}=a_{i j}$ for all $i \neq j$
- C-style booleans can use plain matrix multiplication; true booleans require multiplication with $\wedge$ instead of $\times$ and $\vee$ instead of +
- Repeat multiplications on the hypercube do not necessitate data redistribution, since the result of the previous multiplication is in the right place for the next multiplication
- We can compute $C$ using $O(\log n)$ matrix multiplications
- Indeed, the graph $C$ is the reflexive and transitive closure of the graph $A$ and so $A^{\prime p}=A^{\prime n}$ for any $p \geqslant n$
- So $C$ can be computed on the hypercube with $n^{3}$ processors and in $O\left(\log ^{2} n\right)$ time


## ALL-PAIRS SHORTEST PATHS

- Given a weight matrix $W$ defining a graph $G=(\{0,1, \ldots, n\}, E)$, compute the matrix $D$ such that $d_{i j}$ is the cost of the shortest path between $i$ and $j$
- We assume no cycles of negative weight (no advantage to visit any vertex more than once)
- Useful property: Any shortest path between two vertices contain shortest paths between the intermediate vertices
- So in computing a shortest path we can compute all the combinations of shortest subpaths and then choose the shortest one
- So the shortest paths $d_{i j}^{k}$ containing at most $k+1$ vertices can be computed inductively:
- $d_{i j}^{1}=w_{i j}$ whenever there exists a vertex between $i$ and $j$ and $\infty$ otherwise
- $d_{i j}^{k}=\min _{0 \leqslant p<n}\left(d_{i p}^{k / 2}+d_{p j}^{k / 2}\right)$
- $D^{k}=\left(d_{i j}^{k}\right)_{0 \leqslant i, j<n}$ computable starting from $D^{1}$ using a special form of matrix multiplication with + instead of $\times$ and min instead of +
- $O\left(\log ^{2} n\right)$ time on the hypercube with $n$ processors
- This can go like this all the way to minimum-weight spanning trees...
- Matrix representation for graphs more advantageous on the hypercube than other representations
- (Binary) tree
- Degree 3, diameter $O(\log n)$
- Mesh of trees: $n^{1 / 2}$ identical binary trees of $n^{1 / 2}$ processors; each set of $n^{1 / 2}$ "equivalent" processors (in the sense of a preorder traversal) linked to form a binary tree
- Degree 6, diameter $O(\log n)$
- Star: each processor is labeled with a permitation of $\{1,2, \ldots, m\}$ ( $m$ ! processors for a given $m$ ); two processors $P_{u}$ and $P_{v}$ are connected with each other whenever the index $v$ can be obtained from the index $u$ by exchanging the first symbol with the $i$-th symbol for some $2 \leqslant i \leqslant m$
- Degree $m-1$, diameter $O(m)$

