CS 467/567: Algorithms for Interconnection Networks

Stefan D. Bruda

Winter 2023

- The PRAM is a very powerful model, rarely realizable in practive
 - It is however important for the theory of algorithms
 - Lower bounds are particularly strong on the PRAM
 - Surprising equivalences to other, realistic models
- Most massively parallel machines are laid out as networks
- From the point of view of the theory of algorithms interconnection networks typically have fixed topology
 - An interconnection network is therefore a family of graphs with RAM processors (including storage) as nodes and (direct) data links as edges
 - The number of processors (nodes) may vary, but the topology remains the same
 - Possible topology: linear array, mesh, tree, hypercube, fully connected (not realistic), etc.
- Note however that models with variable topology also exist

- In a linear array with *n* processors, processor *P_i* is (bidirectionally) connected to processor *P_{i+1}* for all 1 ≤ *i* < *n*
 - The simplest network topology, weakest model
- Problem: Sort in nondecreasing order a sequence $S = \langle S_1, S_2, ..., S_n \rangle$ which is available on-line, meaning that each S_i becomes available at time *i*, $1 \le i \le n$
 - Assume that P1 is the "input processor" where input data becomes available
- $\Omega(n)$ lower bound for the running time no matter how many processors are available
 - Indeed, this is how much time it takes for all the data to arrive
- Useful basic operation: COMPARE-EXCHANGE(*P_i*, *P_{i+1}*)
 - Compares the designated values held by P_i and P_{i+1} and possibly exchanges them, so that the smaller value is placed in P_i and the largest in P_{i+1}
 - O(1) computation and communication steps

Algorithm SORT-COMPARISON-EXCHANGE:

- P₁ reads S₁
- (a) for j = 2 to n do
 - for i = 1 to j 1 do in parallel P_i sends its designated value to P_{i+1}
 - **2** P_1 reads s_j
 - **(3)** for all odd i < j do in parallel COMPARE-EXCHANGE (P_i, P_{i+1})
- **(a)** for j = 1 to n do in parallel
 - P_1 produces its datum as output
 - **(a)** for i = 2 to n j + 1 do in parallel P_i sends its datum to P_{i-1}
 - **(3)** for all odd i < n j do in parallel COMPARE-EXCHANGE (P_i, P_{i+1})

Algorithm SORT-COMPARISON-EXCHANGE:

- P₁ reads S₁
- for *j* = 2 to *n* do
 - for i = 1 to j 1 do in parallel P_i sends its designated value to P_{i+1}
 - **2** P_1 reads s_j
 - **(a)** for all odd i < j do in parallel COMPARE-EXCHANGE(P_i, P_{i+1})
- **(a)** for j = 1 to n do in parallel
 - *P*₁ produces its datum as output
 - **(a)** for i = 2 to n j + 1 do in parallel P_i sends its datum to P_{i-1}
 - **(3)** for all odd i < n j do in parallel COMPARE-EXCHANGE (P_i, P_{i+1})

• Linear (optimal) running time, but $O(n^2)$ cost

Maintain the PRAM idea of several merges overlapping

- Now the merges are pipelined in a real pipeline
- We actually need two pipelines, so conceptually we consider that there are two links (top and bottom) between processors

Mergesort on r + 1 processors, with $r = \log n$:

- Processor P₁:
 - **()** Reads s_1 from the input sequence; $i \leftarrow 1$
 - for i = 2 to n do
 - **if** *j* is odd **then** place s_{i-1} on the top link
 - 2 else place s_{i-1} on the bottom link
 - S Reads s_i from the input sequence; $i \leftarrow j + 1$
 - Plase s_n on the bottom link

SORTING BY MERGING (CONT'D)

• Processor P_i , $2 \leq i \leq r$:

a while k < n do

if the top input buffer contains 2^{i-2} values **and** the bottom input buffer contains one value **then**

- **()** for m = 1 to 2^{i-1} do
 - (a) Let x be the largest of the first elements from the top and bottom buffers
 - (b) Remove x from its buffer
 - (c) if j is odd then place x on the top link
 - (d) else place x on the bottom link

2)
$$j \leftarrow j+1, k \leftarrow k+2^{i-1}$$

Processor *p*_{r+1}:

• if the top input buffer contains 2^{*r*-1} values **and** the bottom input buffer contains one value **then**

• Let x be the largest of the first elements from the top and bottom buffers

- Remove x from its buffer and produce it as output
- P_i needs $2^{i-2} + 1$ values so it starts at time $2^{i-2} + 1$ after P_{i-1}
- P_i produces its first output at time $1 + (2^0 + 1) + (s^1 + 1) + \dots + (2^{i-2} + 1)$ = $2^{i-1} + i - 1$ and its last output n - 1 time units later
- Running time $2^r + r + (n-1) = 2n + \log n 1 = O(n)$; cost $O(n \log n)$

- Lower bound assuming that the input data is distributed to all processors: $\Omega(N)$ time (and so $\Omega(N^2)$ cost)
 - In the worst case one datum must traverse the diameter of the network
 - Diameter: the maximum number of links on the shortest path between two processors
- Therefore a bubble sort variant is optimal

Algorithm TRANSPOSITION-SORT:

for
$$j = 0$$
 to $N - 1$ do
for $i = 0$ to $N - 1$ do in parallel

if *i* mod $2 = j \mod 2$ then COMPARE-EXCHANGE(P_i, P_{i+1})

MORE COMPLEX NETWORKS

- Biggest disadvantage of the linear array: largest possible diameter
- The two-dimensional array (or mesh) provides a considerably smaller diameter while maintaining many of the nice properties of the linear array
 - Simple theoretically, appealing in practice
 - Fixed and small maximum degree for nodes (4)
 - Regular and modular topology
- In a mesh of *N* processors each processor P_{ij} is connected to $P_{(i+1)j}$ and $P_{i(j+1)}$, $1 \le i, j < N^{1/2}$
 - $\bullet~2 \textit{N}^{1/2}-2$ diameter, considerably smaller than for the linear array
 - Still the diameter is quite large

MORE COMPLEX NETWORKS

- Biggest disadvantage of the linear array: largest possible diameter
- The two-dimensional array (or mesh) provides a considerably smaller diameter while maintaining many of the nice properties of the linear array
 - Simple theoretically, appealing in practice
 - Fixed and small maximum degree for nodes (4)
 - Regular and modular topology
- In a mesh of *N* processors each processor P_{ij} is connected to $P_{(i+1)j}$ and $P_{i(i+1)}$, $1 \le i, j < N^{1/2}$
 - $2N^{1/2} 2$ diameter, considerably smaller than for the linear array
 - Still the diameter is quite large
- Good compromise between vertex degree and network diameter: the hypercube
 - For some integers *i* and *b*, let *i*^(*b*) if the binary representations of *i* and *i*^(*b*) differ only in the *b* position
 - The processors P₁, P₂, ..., P_N for N = 2^g, g ≥ 1 are arranged in a g-dimensional hypercube whenever each processor P_i is connected to exactly all the processors P_i(b), 0 ≤ b < g
 - $O(\log N)$ for both degree and diameter

MATRIX MULTIPLICATION ON THE HYPERCUBE

- Need to compute $c_{jk} = \sum_{i=0}^{n-1} a_{ji} \times b_{ik}$ for $0 \le j, k < n$
 - Straightforward sequential algorithm: $O(n^3)$ running time
 - Best known sequential algorithm: $O(n^{2+\varepsilon})$ running time, $0 < \varepsilon < 0.38$
- For input size $n = 2^g$ we use a hypercube with $N = n^3 = 2^{3g}$ processors
 - Imagine the processors conceptually arranged in an $n \times n \times n$ array such that P_r (or $P_{(i,j,k)}$) occupies position (i, j, k) with $r = in^2 + jn + k$

$$r = \underbrace{r_{3g-1}r_{3g-2}\ldots r_{2q}}_{i}\underbrace{r_{2q-1}r_{2q-2}\ldots r_{q}}_{j}\underbrace{r_{q-1}r_{q-2}\ldots r_{0}}_{k}$$

- Each set of processors that agrees with each other on one coordinate [two coordinates] form a hypercube with *n*² processors [*n* processors]
- Processors $P_{(i,j,k)}$, $0 \le j, k < n$ form a "layer" for *n* layers overall
- Designated registers for P_r/P_(i,j,k): A_r, B_r, C_r / A_(i,j,k), B_(i,j,k), C_(i,j,k)
- Input available in $A_{(0,j,k)}$ ($A_{(0,j,k)} = a_{jk}$) and $B_{(0,j,k)}$ ($B_{(0,j,k)} = b_{jk}$)
- Output produced in $C_{(0,j,k)}$ ($C_{(0,j,k)} = c_{jk}$)
- The algorithm performs all the arithmetic calculations in constant time, but still need $O(\log n)$ time for data distribution (not optimal)

Algorithm MATRIX-MULTIPLICATION $(A = (a_{ij})_{0 \le i, j \le n}, B = (b_{ij})_{0 \le i, j \le n})$ returns $C = (c_{ii})_{0 \le i, i \le n}$: Data distribution: A and B (layer 0) are distributed to the other processors so that $P_{(i,i,k)}$ stores a_{ii} and b_{ik} **o** for m = 3q - 1 down to 2q do for all $0 \leq r < N \land r_m = 0$ do in parallel $A_{r(m)} \leftarrow A_r; B_{r(m)} \leftarrow B_r$ // result: $A_{(i,j,k)} = a_{jk}$ and $B_{(i,j,k)} = b_{jk}$, $0 \le i < n$ **2** for m = g - 1 down to 0 do for all $0 \leq r < N \land r_m = r_{2q+m}$ do in parallel $A_{r(m)} \leftarrow A_r$ $// A_{(i,i,i)} \rightarrow A_{(i,i,k)}$; result: $A_{(i,i,k)} = a_{ii}, 0 \leq k < n$ (a) for m = 2g - 1 down to g do for ann $0 \leq r < N \land r_m = r_{q+m}$ do in parallel $B_{r(m)} \leftarrow B_r$ $|| B_{(i,i,k)} \rightarrow B_{(i,i,k)}$; result: $B_{(i,i,k)} = a_{ik}, 0 \leq i < n$ **2** Term computation: Each $P_{(i,i,k)}$ computes $C_{(i,i,k)} \leftarrow A_{(i,i,k)} \times B_{(i,i,k)}$ // result: $C_{(i,i,k)} = a_{ii} \times b_{ik}$

Summation: For $0 \leq j, k < n$ compute $C_{(0,j,k)} \leftarrow \sum_{i=0}^{n-1} C_{(i,j,k)}$

- Connectivity matrix: given an adjacency matrix $A = (a_{ij})_{0 \le i,j < n}$ defining a graph $G = (\{0, 1, ..., n\}, E)$ $(a_{ij} = 1$ if $(i, j) \in E$ and 0 otherwise), the connectivity matrix $C = (c_{ij})_{0 \le i,j < n}$ is defined such that $c_{ij} = 1$ if there exists a path from *i* to *j* and 0 otherwise
- The connectivity matrix can be computed as follows: $C = A'^n$, where $A' = (a'_{ij})_{0 \le i,j < n}$ with $a'_{ij} = 1$ and $a'_{ij} = a_{ij}$ for all $i \ne j$
 - C-style booleans can use plain matrix multiplication; true booleans require multiplication with \wedge instead of \times and \vee instead of +
 - Repeat multiplications on the hypercube do not necessitate data redistribution, since the result of the previous multiplication is in the right place for the next multiplication
 - We can compute C using $O(\log n)$ matrix multiplications

- Connectivity matrix: given an adjacency matrix $A = (a_{ij})_{0 \le i,j < n}$ defining a graph $G = (\{0, 1, ..., n\}, E)$ $(a_{ij} = 1$ if $(i, j) \in E$ and 0 otherwise), the connectivity matrix $C = (c_{ij})_{0 \le i,j < n}$ is defined such that $c_{ij} = 1$ if there exists a path from *i* to *j* and 0 otherwise
- The connectivity matrix can be computed as follows: $C = A'^n$, where $A' = (a'_{ij})_{0 \le i,j < n}$ with $a'_{ij} = 1$ and $a'_{ij} = a_{ij}$ for all $i \ne j$
 - C-style booleans can use plain matrix multiplication; true booleans require multiplication with \wedge instead of \times and \vee instead of +
 - Repeat multiplications on the hypercube do not necessitate data redistribution, since the result of the previous multiplication is in the right place for the next multiplication
 - We can compute C using $O(\log n)$ matrix multiplications
 - Indeed, the graph *C* is the reflexive and transitive closure of the graph *A* and so $A'^p = A'^n$ for any $p \ge n$
 - So *C* can be computed on the hypercube with n^3 processors and in $O(\log^2 n)$ time

ALL-PAIRS SHORTEST PATHS

- Given a weight matrix W defining a graph G = ({0, 1, ..., n}, E), compute the matrix D such that d_{ij} is the cost of the shortest path between i and j
 - We assume no cycles of negative weight (no advantage to visit any vertex more than once)
 - Useful property: Any shortest path between two vertices contain shortest paths between the intermediate vertices
 - So in computing a shortest path we can compute all the combinations of shortest subpaths and then choose the shortest one
 - So the shortest paths d_{ij}^k containing at most k + 1 vertices can be computed inductively:
 - $d_{ii}^1 = w_{ij}$ whenever there exists a vertex between *i* and *j* and ∞ otherwise

•
$$d_{ij}^{k} = \min_{0 \le p < n} (d_{ip}^{k/2} + d_{pj}^{k/2})$$

- D^k = (d^k_{ij})_{0≤i,j<n} computable starting from D¹ using a special form of matrix multiplication with + instead of × and min instead of +
 - $O(\log^2 n)$ time on the hypercube with *n* processors
- This can go like this all the way to minimum-weight spanning trees...
- Matrix representation for graphs more advantageous on the hypercube than other representations

• (Binary) tree

- Degree 3, diameter $O(\log n)$
- Mesh of trees: $n^{1/2}$ identical binary trees of $n^{1/2}$ processors; each set of $n^{1/2}$ "equivalent" processors (in the sense of a preorder traversal) linked to form a binary tree
 - Degree 6, diameter $O(\log n)$
- Star: each processor is labeled with a permitation of $\{1, 2, ..., m\}$ (*m*! processors for a given *m*); two processors P_u and P_v are connected with each other whenever the index *v* can be obtained from the index *u* by exchanging the first symbol with the *i*-th symbol for some $2 \le i \le m$
 - Degree m 1, diameter O(m)