
CS 467/567: Algorithms for Interconnection
Networks

Stefan D. Bruda

Winter 2023



PRAM VS. INTERCONNECTION NETWORKS

The PRAM is a very powerful model, rarely realizable in practive
It is however important for the theory of algorithms
Lower bounds are particularly strong on the PRAM
Surprising equivalences to other, realistic models

Most massively parallel machines are laid out as networks
From the point of view of the theory of algorithms interconnection
networks typically have fixed topology

An interconnection network is therefore a family of graphs with RAM
processors (including storage) as nodes and (direct) data links as edges
The number of processors (nodes) may vary, but the topology remains the
same
Possible topology: linear array, mesh, tree, hypercube, fully connected (not
realistic), etc.

Note however that models with variable topology also exist

CS 467/567 (S. D. Bruda) Winter 2023 1 / 12



LINEAR ARRAYS AND ON-LINE SORTING

In a linear array with n procesors, procesor Pi is (bidirectionally)
connected to processor Pi`1 for all 1 ď i ă n

The simplest network topology, weakest model

Problem: Sort in nondecreasing order a sequence S “ ⟨S1,S2, . . . ,Sn⟩
which is available on-line, meaning that each Si becomes available at
time i , 1 ď i ď n

Assume that P1 is the “input processor” where input data becomes available

Ωpnq lower bound for the running time no matter how many processors
are available

Indeed, this is how much time it takes for all the data to arrive

Useful basic operation: COMPARE-EXCHANGEpPi ,Pi`1q

Compares the designated values held by Pi and Pi`1 and possibly
exchanges them, so that the smaller value is placed in Pi and the largest in
Pi`1

Op1q computation and communication steps

CS 467/567 (S. D. Bruda) Winter 2023 2 / 12



SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:
1 P1 reads S1
2 for j “ 2 to n do

1 for i “ 1 to j ´ 1 do in parallel Pi sends its designated value to Pi`1
2 P1 reads sj
3 for all odd i ă j do in parallel COMPARE-EXCHANGEpPi ,Pi`1q

3 for j “ 1 to n do in parallel
1 P1 produces its datum as output
2 for i “ 2 to n ´ j ` 1 do in parallel Pi sends its datum to Pi´1
3 for all odd i ă n ´ j do in parallel COMPARE-EXCHANGEpPi ,Pi`1q

Linear (optimal) running time, but Opn2q cost

CS 467/567 (S. D. Bruda) Winter 2023 3 / 12



SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:
1 P1 reads S1
2 for j “ 2 to n do

1 for i “ 1 to j ´ 1 do in parallel Pi sends its designated value to Pi`1
2 P1 reads sj
3 for all odd i ă j do in parallel COMPARE-EXCHANGEpPi ,Pi`1q

3 for j “ 1 to n do in parallel
1 P1 produces its datum as output
2 for i “ 2 to n ´ j ` 1 do in parallel Pi sends its datum to Pi´1
3 for all odd i ă n ´ j do in parallel COMPARE-EXCHANGEpPi ,Pi`1q

Linear (optimal) running time, but Opn2q cost

CS 467/567 (S. D. Bruda) Winter 2023 3 / 12



SORTING BY MERGING

Maintain the PRAM idea of several merges overlapping
Now the merges are pipelined in a real pipeline
We actually need two pipelines, so conceptually we consider that there
are two links (top and bottom) between processors

Mergesort on r ` 1 processors, with r “ log n:
Processor P1:

1 Reads s1 from the input sequence; i Ð 1
2 for i “ 2 to n do

1 if j is odd then place si´1 on the top link
2 else place si´1 on the bottom link
3 Reads si from the input sequence; i Ð j ` 1

3 Plase sn on the bottom link

CS 467/567 (S. D. Bruda) Winter 2023 4 / 12



SORTING BY MERGING (CONT’D)

Processor Pi , 2 ď i ď r :
1 j Ð 1, k Ð 1
2 while k ă n do

if the top input buffer contains 2i´2 values and the bottom input buffer
contains one value then

1 for m “ 1 to 2i´1 do
paq Let x be the largest of the first elements from the top and bottom buffers
pbq Remove x from its buffer
pcq if j is odd then place x on the top link
pdq else place x on the bottom link

2 j Ð j ` 1, k Ð k ` 2i´1

Processor pr`1:
1 if the top input buffer contains 2r´1 values and the bottom input buffer

contains one value then
1 Let x be the largest of the first elements from the top and bottom buffers
2 Remove x from its buffer and produce it as output

Pi needs 2i´2 ` 1 values so it starts at time 2i´2 ` 1 after Pi´1

Pi produces its first output at time 1 ` p20 ` 1q ` ps1 ` 1q ` ¨ ¨ ¨ ` p2i´2 ` 1q

“ 2i´1 ` i ´ 1 and its last output n ´ 1 time units later
Running time 2r ` r ` pn ´ 1q “ 2n ` log n ´ 1 “ Opnq; cost Opn log nq

CS 467/567 (S. D. Bruda) Winter 2023 5 / 12



SORTING (OFF-LINE)

Lower bound assuming that the input data is distributed to all processors:
ΩpNq time (and so ΩpN2q cost)

In the worst case one datum must traverse the diameter of the network
Diameter: the maximum number of links on the shortest path between two
processors

Therefore a bubble sort variant is optimal

Algorithm TRANSPOSITION-SORT:
1 for j “ 0 to N ´ 1 do

for i “ 0 to N ´ 1 do in parallel
1 if i mod 2 “ j mod 2 then COMPARE-EXCHANGEpPi ,Pi`1q

CS 467/567 (S. D. Bruda) Winter 2023 6 / 12



MORE COMPLEX NETWORKS

Biggest disadvantage of the linear array: largest possible diameter
The two-dimensional array (or mesh) provides a considerably smaller
diameter while maintaining many of the nice properties of the linear array

Simple theoretically, appealing in practice
Fixed and small maximum degree for nodes (4)
Regular and modular topology

In a mesh of N processors each processor Pij is connected to Ppi`1qj and
Pipj`1q, 1 ď i , j ă N1{2

2N1{2
´ 2 diameter, considerably smaller than for the linear array

Still the diameter is quite large

Good compromise between vertex degree and network diameter: the
hypercube

For some integers i and b, let ipbq if the binary representations of i and ipbq

differ only in the b position
The processors P1, P2, . . . , PN for N “ 2g , g ě 1 are arranged in a
g-dimensional hypercube whenever each processor Pi is connected to
exactly all the processors Pipbq , 0 ď b ă g
OplogNq for both degree and diameter

CS 467/567 (S. D. Bruda) Winter 2023 7 / 12



MORE COMPLEX NETWORKS

Biggest disadvantage of the linear array: largest possible diameter
The two-dimensional array (or mesh) provides a considerably smaller
diameter while maintaining many of the nice properties of the linear array

Simple theoretically, appealing in practice
Fixed and small maximum degree for nodes (4)
Regular and modular topology

In a mesh of N processors each processor Pij is connected to Ppi`1qj and
Pipj`1q, 1 ď i , j ă N1{2

2N1{2
´ 2 diameter, considerably smaller than for the linear array

Still the diameter is quite large

Good compromise between vertex degree and network diameter: the
hypercube

For some integers i and b, let ipbq if the binary representations of i and ipbq

differ only in the b position
The processors P1, P2, . . . , PN for N “ 2g , g ě 1 are arranged in a
g-dimensional hypercube whenever each processor Pi is connected to
exactly all the processors Pipbq , 0 ď b ă g
OplogNq for both degree and diameter

CS 467/567 (S. D. Bruda) Winter 2023 7 / 12



MATRIX MULTIPLICATION ON THE HYPERCUBE

Need to compute cjk “
∑n´1

i“0 aji ˆ bik for 0 ď j , k ă n
Straightforward sequential algorithm: Opn3

q running time
Best known sequential algorithm: Opn2`ε

q running time, 0 ă ε ă 0.38

For input size n “ 2g we use a hypercube with N “ n3 “ 23g processors
Imagine the processors conceptually arranged in an n ˆ n ˆ n array such
that Pr (or Ppi,j,kq) occupies position pi , j , kq with r “ in2

` jn ` k

r “ r3g´1r3g´2 . . . r2q︸ ︷︷ ︸
i

r2q´1r2q´2 . . . rq︸ ︷︷ ︸
j

rq´1rq´2 . . . r0︸ ︷︷ ︸
k

Each set of processors that agrees with each other on one coordinate [two
coordinates] form a hypercube with n2 processors [n processors]
Processors Ppi,j,kq, 0 ď j , k ă n form a “layer” for n layers overall
Designated registers for Pr {Ppi,j,kq: Ar , Br , Cr / Api,j,kq, Bpi,j,kq, Cpi,j,kq

Input available in Ap0,j,kq (Ap0,j,kq “ ajk ) and Bp0,j,kq (Bp0,j,kq “ bjk )
Output produced in Cp0,j,kq (Cp0,j,kq “ cjk )

The algorithm performs all the arithmetic calculations in constant time,
but still need Oplog nq time for data distribution (not optimal)

CS 467/567 (S. D. Bruda) Winter 2023 8 / 12



MATRIX MULTIPLICATION (CONT’D)

Algorithm MATRIX-MULTIPLICATIONpA “ paijq0ďi,jďn,B “ pbijq0ďi,jďnq

returns C “ pcijq0ďi,jďn:
1 Data distribution: A and B (layer 0) are distributed to the other processors

so that Ppi,j,kq stores aji and bik
1 for m “ 3g ´ 1 down to 2g do

for all 0 ď r ă N ^ rm “ 0 do in parallel Arpmq Ð Ar ; Brpmq Ð Br

// result: Api,j,kq “ ajk and Bpi,j,kq “ bjk , 0 ď i ă n
2 for m “ g ´ 1 down to 0 do

for all 0 ď r ă N ^ rm “ r2g`m do in parallel Arpmq Ð Ar

// Api,j,iq Ñ Api,j,kq; result: Api,j,kq “ aji , 0 ď k ă n
3 for m “ 2g ´ 1 down to g do

for ann 0 ď r ă N ^ rm “ rg`m do in parallel Brpmq Ð Br

// Bpi,i,kq Ñ Bpi,j,kq; result: Bpi,j,kq “ ajk , 0 ď i ă n
2 Term computation: Each Ppi,j,kq computes Cpi,j,kq Ð Api,j,kq ˆ Bpi,j,kq

// result: Cpi,j,kq “ aji ˆ bik

3 Summation: For 0 ď j , k ă n compute Cp0,j,kq Ð
∑n´1

i“0 Cpi,j,kq

CS 467/567 (S. D. Bruda) Winter 2023 9 / 12



CONNECTED COMPONENTS IN GRAPHS

Connectivity matrix: given an adjacency matrix A “ paijq0ďi,jăn defining a
graph G “ p{0,1, . . . ,n},Eq (aij “ 1 if pi , jq P E and 0 otherwise), the
connectivity matrix C “ pcijq0ďi,jăn is defined such that cij “ 1 if there
exists a path from i to j and 0 otherwise
The connectivity matrix can be computed as follows: C “ A1n, where
A1 “ pa1

ijq0ďi,jăn with a1
ii “ 1 and a1

ij “ aij for all i ‰ j
C-style booleans can use plain matrix multiplication; true booleans require
multiplication with ^ instead of ˆ and _ instead of `

Repeat multiplications on the hypercube do not necessitate data
redistribution, since the result of the previous multiplication is in the right
place for the next multiplication
We can compute C using Oplog nq matrix multiplications

Indeed, the graph C is the reflexive and transitive closure of the graph A and so
A1p “ A1n for any p ě n

So C can be computed on the hypercube with n3 processors and in
Oplog2 nq time

CS 467/567 (S. D. Bruda) Winter 2023 10 / 12



CONNECTED COMPONENTS IN GRAPHS

Connectivity matrix: given an adjacency matrix A “ paijq0ďi,jăn defining a
graph G “ p{0,1, . . . ,n},Eq (aij “ 1 if pi , jq P E and 0 otherwise), the
connectivity matrix C “ pcijq0ďi,jăn is defined such that cij “ 1 if there
exists a path from i to j and 0 otherwise
The connectivity matrix can be computed as follows: C “ A1n, where
A1 “ pa1

ijq0ďi,jăn with a1
ii “ 1 and a1

ij “ aij for all i ‰ j
C-style booleans can use plain matrix multiplication; true booleans require
multiplication with ^ instead of ˆ and _ instead of `

Repeat multiplications on the hypercube do not necessitate data
redistribution, since the result of the previous multiplication is in the right
place for the next multiplication
We can compute C using Oplog nq matrix multiplications

Indeed, the graph C is the reflexive and transitive closure of the graph A and so
A1p “ A1n for any p ě n

So C can be computed on the hypercube with n3 processors and in
Oplog2 nq time

CS 467/567 (S. D. Bruda) Winter 2023 10 / 12



ALL-PAIRS SHORTEST PATHS

Given a weight matrix W defining a graph G “ p{0,1, . . . ,n},Eq, compute
the matrix D such that dij is the cost of the shortest path between i and j

We assume no cycles of negative weight (no advantage to visit any vertex
more than once)
Useful property: Any shortest path between two vertices contain shortest
paths between the intermediate vertices
So in computing a shortest path we can compute all the combinations of
shortest subpaths and then choose the shortest one
So the shortest paths dk

ij containing at most k ` 1 vertices can be computed
inductively:

d1
ij “ wij whenever there exists a vertex between i and j and 8 otherwise

dk
ij “ min0ďpănpdk{2

ip ` dk{2
pj q

Dk
“ pdk

ij q0ďi,jăn computable starting from D1 using a special form of matrix
multiplication with ` instead of ˆ and min instead of `

Oplog2 nq time on the hypercube with n processors

This can go like this all the way to minimum-weight spanning trees. . .
Matrix representation for graphs more advantageous on the hypercube
than other representations

CS 467/567 (S. D. Bruda) Winter 2023 11 / 12



OTHER INTERESTING NETWORK TOPOLOGIES

(Binary) tree
Degree 3, diameter Oplog nq

Mesh of trees: n1{2 identical binary trees of n1{2 processors; each set of
n1{2 “equivalent” processors (in the sense of a preorder traversal) linked
to form a binary tree

Degree 6, diameter Oplog nq

Star: each processor is labeled with a permitation of {1,2, . . . ,m} (m!
processors for a given m); two processors Pu and Pv are connected with
each other whenever the index v can be obtained from the index u by
exchanging the first symbol with the i-th symbol for some 2 ď i ď m

Degree m ´ 1, diameter Opmq

CS 467/567 (S. D. Bruda) Winter 2023 12 / 12


