CS 467/567: Algorithms for Interconnection

Networks

Stefan D. Bruda

Winter 2023

PRAM vS. INTERCONNECTION NETWORKS

@ The PRAM is a very powerful model, rarely realizable in practive
o Itis however important for the theory of algorithms
o Lower bounds are particularly strong on the PRAM
e Surprising equivalences to other, realistic models
@ Most massively parallel machines are laid out as networks
@ From the point of view of the theory of algorithms interconnection
networks typically have fixed topology
@ An interconnection network is therefore a family of graphs with RAM
processors (including storage) as nodes and (direct) data links as edges
@ The number of processors (nodes) may vary, but the topology remains the
same
o Possible topology: linear array, mesh, tree, hypercube, fully connected (not
realistic), etc.

@ Note however that models with variable topology also exist

CS 467/567 (S. D. Bruda) Winter 2023 1/12

LINEAR ARRAYS AND ON-LINE SORTING

@ In alinear array with n procesors, procesor P; is (bidirectionally)
connected to processor P, ¢ forall1 <i<n
e The simplest network topology, weakest model
@ Problem: Sort in nondecreasing order a sequence S = (51, Ss, ..., Sp)
which is available on-line, meaning that each S; becomes available at
timei,1<i<n
o Assume that P; is the “input processor” where input data becomes available

@ Q(n) lower bound for the running time no matter how many processors
are available

@ Indeed, this is how much time it takes for all the data to arrive

@ Useful basic operation: COMPARE-EXCHANGE(P;, P 1)

o Compares the designated values held by P; and P;.1 and possibly
exchanges them, so that the smaller value is placed in P; and the largest in
Piyq

@ O(1) computation and communication steps

CS 467/567 (S. D. Bruda) Winter 2023 2/12

SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:

@ P;reads S;

@ forj=2tondo
@ for/=1toj— 1doin parallel P; sends its designated value to P4
@ Pjreadss;
© forall odd i < j do in parallel COMPARE-EXCHANGE(P;, Pi11)

© for j =1to ndo in parallel
@ P produces its datum as output
@ fori=2ton—j+ 1doin parallel P; sends its datum to P;_4
© forallodd i < n— j do in parallel COMPARE-EXCHANGE(P;, Pi;1)

CS 467/567 (S. D. Bruda) Winter 2023

3/12

SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:
@ P;reads S
@ forj=2tondo

@ for/=1toj— 1doin parallel P; sends its designated value to P4
@ Pjreadss;
© forall odd i < j do in parallel COMPARE-EXCHANGE(P;, Pi11)

© for j =1to ndo in parallel

@ P produces its datum as output
@ fori=2ton—j+ 1doin parallel P; sends its datum to P;_4
© forallodd i < n— j do in parallel COMPARE-EXCHANGE(P;, Pi;1)

@ Linear (optimal) running time, but O(n?) cost

CS 467/567 (S. D. Bruda) Winter 2023

3/12

SORTING BY MERGING

Maintain the PRAM idea of several merges overlapping
@ Now the merges are pipelined in a real pipeline

@ We actually need two pipelines, so conceptually we consider that there
are two links (top and bottom) between processors

Mergesort on r + 1 processors, with r = log n:
@ Processor P;:

@ Reads s; from the input sequence; i « 1
Q fori=2tondo

@ if jis odd then place s;_1 on the top link
@ else place s;_4 on the bottom link
© Reads s; from the input sequence; j « j + 1

© Plase s, on the bottom link

CS 467/567 (S. D. Bruda) Winter 2023 4/12

SORTING BY MERGING (CONT'D)

@ Processor P;,2 <i<r:
Q je—1, k<1
@ while k < ndo

if the top input buffer contains 2/~2 values and the bottom input buffer
contains one value then
Q form=1to2~"do
(a) Let x be the largest of the first elements from the top and bottom buffers
(b) Remove x from its buffer
(c) if j is odd then place x on the top link
(d) else place x on the bottom link
Qj—j+1,ke—k+2-1

@ Processor pr.1:

@ if the top input buffer contains 2"~ values and the bottom input buffer
contains one value then

@ Let x be the largest of the first elements from the top and bottom buffers
@ Remove x from its buffer and produce it as output

@ P;needs 22 + 1 values so it starts at time 2/~2 + 1 after P;_4

@ P; produces its first output at time 1 + (20 + 1) 4+ (s' +1) +--- + (272 + 1)
= 2=" 4+ i—1 and its last output n — 1 time units later

@ Runningtime 2" +r+ (n—1) =2n+logn—1= O(n); cost O(nlogn)

CS 467/567 (S. D. Bruda) Winter 2023 5/12

SORTING (OFF-LINE)

@ Lower bound assuming that the input data is distributed to all processors:
Q(N) time (and so Q(N?) cost)
@ In the worst case one datum must traverse the diameter of the network
e Diameter: the maximum number of links on the shortest path between two
processors

@ Therefore a bubble sort variant is optimal

Algorithm TRANSPOSITION-SORT:

@ forj=0toN—-1do
fori=0to N — 1 do in parallel
@ if i mod 2 = j mod 2 then COMPARE-EXCHANGE (P}, Pi; 1)

CS 467/567 (S. D. Bruda) Winter 2023 6/12

MORE COMPLEX NETWORKS

@ Biggest disadvantage of the linear array: largest possible diameter

@ The two-dimensional array (or mesh) provides a considerably smaller
diameter while maintaining many of the nice properties of the linear array

o Simple theoretically, appealing in practice
e Fixed and small maximum degree for nodes (4)
@ Regular and modular topology

@ In a mesh of N processors each processor Pj is connected to P, 1); and
Piji1y, 1 <i,j < N2

o 2N'/2 — 2 diameter, considerably smaller than for the linear array
o Still the diameter is quite large

CS 467/567 (S. D. Bruda) Winter 2023 7/12

MORE COMPLEX NETWORKS

@ Biggest disadvantage of the linear array: largest possible diameter

@ The two-dimensional array (or mesh) provides a considerably smaller
diameter while maintaining many of the nice properties of the linear array
o Simple theoretically, appealing in practice
e Fixed and small maximum degree for nodes (4)
@ Regular and modular topology
@ In a mesh of N processors each processor Pj is connected to P, 1); and
Pigs1), 1 <i,j < N2
o 2N'/2 — 2 diameter, considerably smaller than for the linear array
o Still the diameter is quite large
@ Good compromise between vertex degree and network diameter: the
hypercube
o For some integers i and b, let i?) if the binary representations of i and i®’
differ only in the b position
o The processors Py, Pz, ..., Pyfor N =29, g > 1 are arranged in a
g-dimensional hypercube whenever each processor P; is connected to
exactly all the processors P, 0 < b< g
@ O(log N) for both degree and diameter

CS 467/567 (S. D. Bruda) Winter 2023 7/12

MATRIX MULTIPLICATION ON THE HYPERCUBE

@ Need to compute ci = Y71 aj x b for 0 < j,k < n
e Straightforward sequential algorithm: O(n®) running time
@ Best known sequential algorithm: O(n?*¢) running time, 0 < ¢ < 0.38
@ For input size n = 29 we use a hypercube with N = n® = 239 processors

o Imagine the processors conceptually arranged in an n x n x n array such
that P, (or P(; j k) occupies position (i, f, k) with r = i? + jn+ k

r=rg—1l3g—2...lqlRq—1rq—2...Iqlq—1lq—2... 10

i j K

Each set of processors that agrees with each other on one coordinate [two
coordinates] form a hypercube with r? processors [n processors]
Processors P(;;), 0 < j, k < nform a “layer” for n layers overall
Designated registers for P,/P;jxy: Ar, Br, Cr / Agijiys Bk, Ciijiio

Input available in A(O,j,k) (A(O,j,k) = a,-k) and B(()’j’k) (B(OJJ() = bjk)

o Output produced in Co .« (Cio,j,k) = Cik)

@ The algorithm performs all the arithmetic calculations in constant time,
but still need O(log n) time for data distribution (not optimal)

CS 467/567 (S. D. Bruda) Winter 2023 8/12

MATRIX MULTIPLICATION (CONT'D)

Algorithm MATRIX-MULTIPLICATION(A = (&j)o<ij<n B = (bj)o<ij<n)
returns C = (Cj)o<ij<n:

@ Data distribution: A and B (layer 0) are distributed to the other processors
so that P; ; x) stores a; and by
@ for m=3g— 1down to 2g do
forall0 <r <N A rn=0doin parallel A, m) — Ar; B.my — Br
// result: A(,’_’j_’k) = aj and B(,-'/"k) = bjk, 0<i<n
@ form=g—1downto0do
forall 0 <r < N A rm = Rgim doin parallel A,(m) — A
/ A(,‘J},‘) - A(,’_’j?k); result: AUJ»") = &jj, 0<k<n
@ for m=2g—1downto gdo
forann0 < r < N A I = g4 m do in parallel B,y — B:
/ B(,',,');Q — B(,',j,k); result: B(,-'jyk) =ax,0<i<n

@ Term computation: Each P j.xy computes Cgijky < Aijk) X Bijk
// result: C(,’J,k) = gjj X b,'k

@ Summation: For 0 < j, k < ncompute Cijx) < >or-o Ciijik)

CS 467/567 (S. D. Bruda) Winter 2023 9/12

CONNECTED COMPONENTS IN GRAPHS

@ Connectivity matrix: given an adjacency matrix A = (&;)o<i j<n defining a
graph G = ({0,1,...,n}, E) (a; = 1if (i,j) € E and 0 otherwise), the
connectivity matrix C = (Cj)o<i j<n is defined such that ¢; = 1 if there
exists a path from j to j and 0 otherwise

@ The connectivity matrix can be computed as follows: C = A", where
A" = (&)o<ij<n With @; = 1 and &j; = a; for all / j

@ C-style booleans can use plain matrix multiplication; true booleans require
multiplication with A instead of x and v instead of +

o Repeat multiplications on the hypercube do not necessitate data
redistribution, since the result of the previous multiplication is in the right
place for the next multiplication

@ We can compute C using O(log n) matrix multiplications

CS 467/567 (S. D. Bruda) Winter 2023 10/12

CONNECTED COMPONENTS IN GRAPHS

@ Connectivity matrix: given an adjacency matrix A = (&;)o<i j<n defining a
graph G = ({0,1,...,n}, E) (a; = 1if (i,j) € E and 0 otherwise), the
connectivity matrix C = (Cj)o<i j<n is defined such that ¢; = 1 if there
exists a path from j to j and 0 otherwise

@ The connectivity matrix can be computed as follows: C = A", where
A" = (&)o<ij<n With @; = 1 and &j; = a; for all / j

@ C-style booleans can use plain matrix multiplication; true booleans require
multiplication with A instead of x and v instead of +

o Repeat multiplications on the hypercube do not necessitate data
redistribution, since the result of the previous multiplication is in the right
place for the next multiplication

@ We can compute C using O(log n) matrix multiplications

@ Indeed, the graph C is the reflexive and transitive closure of the graph A and so
AP = A"forany p > n

@ So C can be computed on the hypercube with n® processors and in

O(log? n) time

CS 467/567 (S. D. Bruda) Winter 2023 10/12

ALL-PAIRS SHORTEST PATHS

@ Given a weight matrix W defining a graph G = ({0, 1, ..., n}, E), compute
the matrix D such that dj is the cost of the shortest path between i/ and j

We assume no cycles of negative weight (no advantage to visit any vertex
more than once)
Useful property: Any shortest path between two vertices contain shortest
paths between the intermediate vertices
So in computing a shortest path we can compute all the combinations of
shortest subpaths and then choose the shortest one
So the shortest paths d,jf containing at most k + 1 vertices can be computed
inductively:

o d,.} = wj; whenever there exists a vertex between j and j and co otherwise

. k/2 k/2
o dff = ming<pn(d® + dp/)

D¥ = (df)o<i j<n computable starting from D' using a special form of matrix
multiplication with + instead of x and min instead of +
@ O(log? n) time on the hypercube with n processors

@ This can go like this all the way to minimum-weight spanning trees. . .

@ Matrix representation for graphs more advantageous on the hypercube
than other representations

CS 467/567 (S. D. Bruda) Winter 2023 11/12

OTHER INTERESTING NETWORK TOPOLOGIES

@ (Binary) tree
o Degree 3, diameter O(log n)

@ Mesh of trees: n'/? identical binary trees of n'/? processors; each set of
n'/2 “equivalent” processors (in the sense of a preorder traversal) linked
to form a binary tree

o Degree 6, diameter O(log n)

@ Star: each processor is labeled with a permitation of {1,2,..., m} (m!
processors for a given m); two processors P, and P, are connected with
each other whenever the index v can be obtained from the index u by
exchanging the first symbol with the i-th symbol for some 2 < i< m

o Degree m — 1, diameter O(m)

CS 467/567 (S. D. Bruda) Winter 2023 12/12

