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SPACE-BOUNDED COMPUTATIONS

A Turing machine M is spnq-space bounded, s : N Ñ N if

M is a Turing machine with a read-only input tape, a write-only output tape,
and a (read-write) work tape
The output tape is initially empty and each time the machine writes on that
tape it writes a symbol into the square immediately adjacent to the right of
the last overwritten tape square
A configuration of M is a tuple {pq,w , uav , αq} where q is the current state,
w is the (read only) input, uav is the content of the work tape, and α is the
output produced so far.
There is no configuration pq,w , uav , αq such that
ps,w , ε, εq $

˚
M pq,w , uav , αq and |uav | ą sp|w |q.

DSPACEpspnqq / NSPACEpspnqq Ñ the class of all the decision problems
solved by spnq-space bounded, deterministic/nondeterministic Turing
machines
Shorthand: L “ DSPACEplog nq, NL “ NSPACEplog nq,
POLYLOGSPACE “

⋃
kě1 DSPACEplogk nq “ DSPACEplogOp1q nq

Note in passing: DSPACEpspnqq “ DSPACEpspnq{cq for all c P N

L Ď NL Ď P; widely believed (but not proven) that all the inclusions are
strict
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THE GRAPH ACCESSIBILITY PROBLEM (GAP)

GAP: Given a directed graph G “ pV ,Eq and two vertices u, v P V ,
determine whether there exists a path from u to v
GAP P NL:
Algorithm N-GAPpG “ pV ,Eq,u, vq returns J{K:

1 x Ð u
2 while x ‰ v do

1 nondeterministically guess a value y P V
2 if px , yq R E then return K

3 x Ð y
3 return J

GAP P DSPACEplog2 nq:
Algorithm D-GAPpG “ pV ,Eq,u, vq returns J{K:

return PATHpG,u, v , |V |q

Algorithm PATHpG “ pV ,Eq, i , j , kq returns J{K:
1 if k “ 0 then return i “ j else if k “ 1 then return pi , jq P E
2 else return Dl P V : PATHpi , l , ⌈k{2⌉q ^ PATHpl , j , ⌈k{2⌉q

Oplog nq recursion depth and Oplog nq storage per level “ Oplog2 nq space

GAP can be solved in parallel in Oplog2 nq time (see hypercube algorithm)
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DETERMINISTIC VS NONDETERMINISTIC SPACE

Theorem (Savitch’s theorem)
NSPACEpspnqq Ď DSPACEpspnq2q for most useful functions spnq “ Ωplog nq

including polynomials and poly-logarithms (space-constructible functions)

Let M be an spnq-space bounded Turing machine
Size of configuration graph: 2Opspnqq vertices
Use GAP to determine whether the accepting configuration is accessible
from the initial configuration Ñ plog 2Opspnqqq2 “ Opspnq2q space

Corollary
NL Ď DSPACEpOplog2 nqq

NSPACEplogOp1q nq “ DSPACEplogOp1q nq (“ POLYLOGSPACE)
DSPACEpnOp1qq “ NSPACEpnOp1qq (“ PSPACE)

Known that P ‰ POLYLOGSPACE; conjectured that
P Ę POLYLOGSPACE and POLYLOGSPACE Ę P
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LOG-SPACE COMPLETENESS

A language A is log-space reducible to language B (A ďlog B) iff there
exists a function τ computable in logarithmic space such that x P A iff
τpxq P B
Let C be a class of languages

B is log-space hard for C if A ďlog B for all A P C
B is log-space complete for C if B is log-space hard for C and B P C
P-complete stands for “log-space complete for P”

How can we conclude that if a problem is P-complete and also in
POLYLOGSPACE then P Ď POLYLOGSPACE?

Naı̈ve approach: given input x for some problem A P P, use the log-space
machine Mτ that computes the log-space reduction from A to a P-complete
problem B, then run the machine MB (that accepts B) on Mτ pxq

This approach fails (not enough space to store Mτ pxq)
However, we can modify the Turing machine Mτ to obtain M 1

τ such that
M 1

τ px , iq “ the i-th bit of Mτ pxq

Every transitions of MB depends on a single input bit
So instead of computing all the input Mτ pxq in advance, we use M 1

τ on
demand to obtain the particular bit needed by the current transition of MB
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THE PARALLEL COMPUTATION THESIS

Theorem (The parallel computation thesis)
Time on any reasonable parallel model is polynomially equivalent to the space
used by a sequential machine

Technically a conjecture rather than theorem because of the presence of
“reasonable”

A “reasonable” parallel machine usually features restrictions on word size,
instruction set, and parallelism

Powerful theoretical tool

Corollary
All P-complete problems are inherently sequential unless
P Ď POLYLOGSPACE

It is likely that no P-complete problem is in POLYLOGSPACE
Therefore according to the parallel computation thesis they cannot be
solved in parallel in OplogOp1q nq time
The only possibility remaining is that they can be solved in parallel in
polynomial time Ñ no better than solving them sequentially

CS 467/567 (S. D. Bruda) Winter 2023 5 / 7



THE PARALLEL COMPUTATION THESIS (CONT’D)

Theorem
An spnq space-bounded deterministic Turing machine can be simulated by a
parallel machine with the minimal instruction set, of word size Opspnqq, and in
time Opspnq log spnqq

Theorem
A tpnq time bounded parallel machine with word size wpnq can be simulated
by a deterministic Turing machine using space tpnqpwpnq ` log tpnqq ` spnq,
where spnq is the space requires for the Turing machine to simulate a single
instruction of a processor of the parallel machine
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“REASONABLE” PARALLEL MODELS

Restrictions on the instruction set:
One-time unit cost instructions should be computable in Optpnq

Op1q
q space

by a deterministic Turing machine, where tpnq is the running time of the
parallel machine
One-time unit cost instructions should be computable in Optpnq

Op1q
q time by

a deterministic Turing machine (stronger than the above)

Restrictions on the number of processors:
Most people regard a parallel machine as feasible if the number of
processors is nOp1q (small machine) and the running time is logOp1q n (fast
machine)
However, the parallel computation thesis holds even if the number of
processors is 2Optpnqq or even 2OptpnqqOp1q

Restrictions on the word size
Normally the word size is tpnq

Op1q though in practice the tighter restriction of
Oplog nq size is used for simplicity
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