CS 467/567: The Parallel Computation Thesis

Stefan D. Bruda

Winter 2023

SPACE-BOUNDED COMPUTATIONS

@ A Turing machine M is s(n)-space bounded, s : N — NN if

CS 467/567 (S. D. Bruda) Winter 2023 1/7

SPACE-BOUNDED COMPUTATIONS

@ A Turing machine M is s(n)-space bounded, s : N — N if
e M is a Turing machine with a read-only input tape, a write-only output tape,
and a (read-write) work tape
e The output tape is initially empty and each time the machine writes on that
tape it writes a symbol into the square immediately adjacent to the right of
the last overwritten tape square
o A configuration of M is a tuple {(q, w, uav, «)} where q is the current state,
w is the (read only) input, uav is the content of the work tape, and « is the
output produced so far.
e There is no configuration (g, w, uav, «) such that
(s,w,e,¢) Hpy (g, w,uav, o) and |uav| > s(|w|).
@ DSPACE(s(n)) / NSPACE(s(n)) — the class of all the decision problems
solved by s(n)-space bounded, deterministic/nondeterministic Turing
machines

CS 467/567 (S. D. Bruda) Winter 2023 1/7

SPACE-BOUNDED COMPUTATIONS

@ A Turing machine M is s(n)-space bounded, s : N — N if
e M is a Turing machine with a read-only input tape, a write-only output tape,
and a (read-write) work tape
e The output tape is initially empty and each time the machine writes on that
tape it writes a symbol into the square immediately adjacent to the right of
the last overwritten tape square
o A configuration of M is a tuple {(q, w, uav, «)} where q is the current state,
w is the (read only) input, uav is the content of the work tape, and « is the
output produced so far.
e There is no configuration (g, w, uav, «) such that
(s,w,e,¢) Hpy (g, w,uav, o) and |uav| > s(|w|).
@ DSPACE(s(n)) / NSPACE(s(n)) — the class of all the decision problems
solved by s(n)-space bounded, deterministic/nondeterministic Turing
machines

@ Shorthand: L = DSPACE(log n), NL = NSPACE(log n),
POLYLOGSPACE = Jj.. DSPACE(log" n) = DSPACE(log°"") n)
o Note in passing: DSPACE(s(n)) = DSPACE(s(n)/c) forallce N

CS 467/567 (S. D. Bruda) Winter 2023 1/7

SPACE-BOUNDED COMPUTATIONS

@ A Turing machine M is s(n)-space bounded, s : N — N if

e M is a Turing machine with a read-only input tape, a write-only output tape,
and a (read-write) work tape

e The output tape is initially empty and each time the machine writes on that
tape it writes a symbol into the square immediately adjacent to the right of
the last overwritten tape square

o A configuration of M is a tuple {(q, w, uav, «)} where q is the current state,
w is the (read only) input, uav is the content of the work tape, and « is the
output produced so far.

e There is no configuration (g, w, uav, «) such that
(s,w,e,¢) Hpy (g, w,uav, o) and |uav| > s(|w|).

@ DSPACE(s(n)) / NSPACE(s(n)) — the class of all the decision problems
solved by s(n)-space bounded, deterministic/nondeterministic Turing
machines

@ Shorthand: L = DSPACE(log n), NL = NSPACE(log n),
POLYLOGSPACE = Jj.. DSPACE(log" n) = DSPACE(log°"") n)

o Note in passing: DSPACE(s(n)) = DSPACE(s(n)/c) forallce N

@ L < NL < P; widely believed (but not proven) that all the inclusions are
strict

CS 467/567 (S. D. Bruda) Winter 2023 1/7

THE GRAPH ACCESSIBILITY PROBLEM (GAP)

@ GAP: Given a directed graph G = (V, E) and two vertices u,v € V,
determine whether there exists a path from u to v

@ GAP e NL:
Algorithm N-GAP(G = (V,E),u, v) returns T/L:

0 X <—U
©Q while x # vdo

@ nondeterministically guess a value y € V
Q if (x,y) ¢ E thenreturn L
Q x—vy
Q return T
@ GAP e DSPACE(log? n):
Algorithm D-GAP(G = (V,E),u, v) returns T/L:
return PATH(G, u, v, |V|)
Algorithm PATH(G = (V,E),i,j, k) returns T/L:
@ if Kk =0thenreturni=jelseif k = 1 then return (i,j) € E
@ elsereturn 3/ e V : PATH(/, 1, [k/2]) A PATH(I,j, [k/2])
@ O(log n) recursion depth and O(log n) storage per level = O(log? n) space
@ GAP can be solved in parallel in O(log? n) time (see hypercube algorithm)

CS 467/567 (S. D. Bruda) Winter 2023 2/7

DETERMINISTIC VS NONDETERMINISTIC SPACE

Theorem (Savitch’s theorem)

NSPACE(s(n)) < DSPACE(s(n)?) for most useful functions s(n) = Q(log n)
including polynomials and poly-logarithms (space-constructible functions)

@ Let M be an s(n)-space bounded Turing machine
@ Size of configuration graph: 2°6(") vertices

@ Use GAP to determine whether the accepting configuration is accessible
from the initial configuration — (log 2°(("))2 = O(s(n)?) space

@ NL < DSPACE(O(log? n))
@ NSPACE(log®") n) = DSPACE(log®") n) (= POLYLOGSPACE)
@ DSPACE(n®™") = NSPACE(n°") (= PSPACE)

@ Known that P # POLYLOGSPACE; conjectured that
P ¢ POLYLOGSPACE and POLYLOGSPACE & P

CS 467/567 (S. D. Bruda) Winter 2023 3/7

LOG-SPACE COMPLETENESS

@ A language A is log-space reducible to language B (A <o B) iff there
exists a function = computable in logarithmic space such that x € A iff
T(x)e B

@ Let C be a class of languages

@ Bis log-space hard for Cif A <,s BforallAe C
e Bis log-space complete for C if B is log-space hard for Cand Be C
e P-complete stands for “log-space complete for P”

@ How can we conclude that if a problem is P-complete and also in
POLYLOGSPACE then P < POLYLOGSPACE?

o Naive approach: given input x for some problem A € P, use the log-space
machine M, that computes the log-space reduction from A to a P-complete
problem B, then run the machine Mz (that accepts B) on M, (x)

CS 467/567 (S. D. Bruda) Winter 2023 4/7

LOG-SPACE COMPLETENESS

@ A language A is log-space reducible to language B (A <o B) iff there
exists a function = computable in logarithmic space such that x € A iff
T(x)eB

@ Let C be a class of languages

Bis log-space hard for Cif A <, BforallAe C
B is log-space complete for C if B is log-space hard for C and Be C
‘P-complete stands for “log-space complete for P”

@ How can we conclude that if a problem is P-complete and also in
POLYLOGSPACE then P < POLYLOGSPACE?

Naive approach: given input x for some problem A € P, use the log-space
machine M, that computes the log-space reduction from A to a P-complete
problem B, then run the machine Mz (that accepts B) on M, (x)

This approach fails (not enough space to store M-(x))

However, we can modify the Turing machine M, to obtain M. such that

M. (x, i) = the i-th bit of M- (x)

Every transitions of Mg depends on a single input bit

So instead of computing all the input M, (x) in advance, we use M. on
demand to obtain the particular bit needed by the current transition of Mg

CS 467/567 (S. D. Bruda) Winter 2023 4/7

THE PARALLEL COMPUTATION THESIS

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space
used by a sequential machine

@ Technically a conjecture rather than theorem because of the presence of
“reasonable”

@ A “reasonable” parallel machine usually features restrictions on word size,
instruction set, and parallelism

@ Powerful theoretical tool

All P-complete problems are inherently sequential unless
P < POLYLOGSPACE

@ ltis likely that no P-complete problem is in POLYLOGSPACE

@ Therefore according to the parallel computation thesis they cannot be
solved in parallel in O(log®") n) time

@ The only possibility remaining is that they can be solved in parallel in

polynomial time — no better than solving them sequentially

CS 467/567 (S. D. Bruda) Winter 2023 5/7

THE PARALLEL COMPUTATION THESIS (CONT'D)

An s(n) space-bounded deterministic Turing machine can be simulated by a

parallel machine with the minimal instruction set, of word size O(s(n)), and in
time O(s(n) log s(n))

A t(n) time bounded parallel machine with word size w(n) can be simulated
by a deterministic Turing machine using space t(n)(w(n) + log t(n)) + s(n),

where s(n) is the space requires for the Turing machine to simulate a single
instruction of a processor of the parallel machine

CS 467/567 (S. D. Bruda) Winter 2023 6/7

“REASONABLE” PARALLEL MODELS

@ Restrictions on the instruction set:

@ One-time unit cost instructions should be computable in O(t(n)°") space
by a deterministic Turing machine, where t(n) is the running time of the
parallel machine

o One-time unit cost instructions should be computable in O(t(n)°™") time by
a deterministic Turing machine (stronger than the above)

CS 467/567 (S. D. Bruda) Winter 2023 717

“REASONABLE” PARALLEL MODELS

@ Restrictions on the instruction set:

@ One-time unit cost instructions should be computable in O(t(n)°") space
by a deterministic Turing machine, where t(n) is the running time of the
parallel machine

o One-time unit cost instructions should be computable in O(t(n)°™") time by
a deterministic Turing machine (stronger than the above)

@ Restrictions on the number of processors:

o Most people regard a parallel machine as feasible if the number of
processors is n°") (small machine) and the running time is log®" n (fast
machine)

e However, the parallel computation thesis holds even if the number of
processors is 2°((M) or even 20¢M)°*"

CS 467/567 (S. D. Bruda) Winter 2023 717

“REASONABLE” PARALLEL MODELS

@ Restrictions on the instruction set:

@ One-time unit cost instructions should be computable in O(t(n)°") space
by a deterministic Turing machine, where t(n) is the running time of the
parallel machine

o One-time unit cost instructions should be computable in O(t(n)°™") time by
a deterministic Turing machine (stronger than the above)

@ Restrictions on the number of processors:

o Most people regard a parallel machine as feasible if the number of
processors is n°") (small machine) and the running time is log®" n (fast
machine)

e However, the parallel computation thesis holds even if the number of
processors is 2°((M) or even 20¢M)°*"

@ Restrictions on the word size

o Normally the word size is ¢(n)°(") though in practice the tighter restriction of

O(log n) size is used for simplicity

CS 467/567 (S. D. Bruda) Winter 2023 717

