CS 467/567: The Parallel Computation Thesis

Stefan D. Bruda

Winter 2023
A Turing machine M is $s(n)$-space bounded, $s : \mathbb{N} \rightarrow \mathbb{N}$ if
A Turing machine M is $s(n)$-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if

- M is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape.
- The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square.
- A configuration of M is a tuple $\{(q, w, u\overline{a}v, \alpha)\}$ where q is the current state, w is the (read only) input, $u\overline{a}v$ is the content of the work tape, and α is the output produced so far.
- There is no configuration $(q, w, u\overline{a}v, \alpha)$ such that $(s, w, \varepsilon, \varepsilon) \xrightarrow{\star} M (q, w, u\overline{a}v, \alpha)$ and $|uav| > s(|w|)$.

DSPACE($s(n)$) / NSPACE($s(n)$) → the class of all the decision problems solved by $s(n)$-space bounded, deterministic/nondeterministic Turing machines.
A Turing machine \(M \) is \(s(n) \)-space bounded, \(s : \mathbb{N} \rightarrow \mathbb{N} \) if

- \(M \) is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
- The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
- A configuration of \(M \) is a tuple \(\{(q, w, uαv, α)\} \) where \(q \) is the current state, \(w \) is the (read only) input, \(uαv \) is the content of the work tape, and \(α \) is the output produced so far.
- There is no configuration \((q, w, uαv, α) \) such that \((s, w, ε, ε) \xrightarrow{*} (q, w, uαv, α) \) and \(|uαv| > s(|w|) \).

\(\text{DSPACE}(s(n)) / \text{NSPACE}(s(n)) \rightarrow \) the class of all the decision problems solved by \(s(n) \)-space bounded, deterministic/nondeterministic Turing machines

- Shorthand: \(L = \text{DSPACE}(\log n) \), \(NL = \text{NSPACE}(\log n) \), \(\text{POLYLOGSPACE} = \bigcup_{k \geq 1} \text{DSPACE}(\log^k n) = \text{DSPACE}(\log^{O(1)} n) \)
- Note in passing: \(\text{DSPACE}(s(n)) = \text{DSPACE}(s(n)/c) \) for all \(c \in \mathbb{N} \)
SPACE-BOUNDDED COMPUTATIONS

- A Turing machine M is $s(n)$-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if
 - M is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 - The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 - A configuration of M is a tuple $\{(q, w, u\alpha v, \alpha)\}$ where q is the current state, w is the (read only) input, $u\alpha v$ is the content of the work tape, and α is the output produced so far.
 - There is no configuration $(q, w, u\alpha v, \alpha)$ such that $(s, w, \varepsilon, \varepsilon) \xrightarrow{\ast} (q, w, u\alpha v, \alpha)$ and $|u\alpha v| > s(|w|)$.

- $\text{DSPACE}(s(n)) / \text{NSPACE}(s(n)) \rightarrow$ the class of all the decision problems solved by $s(n)$-space bounded, deterministic/nondeterministic Turing machines

- Shorthand: $L = \text{DSPACE}(\log n)$, $NL = \text{NSPACE}(\log n)$,
 $\text{POLYLOGSPACE} = \bigcup_{k \geq 1} \text{DSPACE}(\log^k n) = \text{DSPACE}(\log^{O(1)} n)$
 - Note in passing: $\text{DSPACE}(s(n)) = \text{DSPACE}(s(n)/c)$ for all $c \in \mathbb{N}$

- $L \subseteq NL \subseteq \mathcal{P}$; widely believed (but not proven) that all the inclusions are strict
THE GRAPH ACCESSIBILITY PROBLEM (GAP)

- **GAP**: Given a directed graph $G = (V, E)$ and two vertices $u, v \in V$, determine whether there exists a path from u to v

- **GAP \in NL**:

 Algorithm $\text{N-GAP}(G = (V, E), u, v)$ returns \top/\bot:

 1. $x \leftarrow u$
 2. while $x \neq v$ do
 1. nondeterministically guess a value $y \in V$
 2. if $(x, y) \notin E$ then return \bot
 3. $x \leftarrow y$
 3. return \top

- **GAP \in DSPACE$(\log^2 n)$**:

 Algorithm $\text{D-GAP}(G = (V, E), u, v)$ returns \top/\bot:

 return $\text{PATH}(G, u, v, |V|)$

 Algorithm $\text{PATH}(G = (V, E), i, j, k)$ returns \top/\bot:

 1. if $k = 0$ then return $i = j$ else if $k = 1$ then return $(i, j) \in E$
 2. else return $\exists l \in V : \text{PATH}(i, l, \lceil k/2 \rceil) \land \text{PATH}(l, j, \lceil k/2 \rceil)$

 $O(\log n)$ recursion depth and $O(\log n)$ storage per level = $O(\log^2 n)$ space

 - GAP can be solved in parallel in $O(\log^2 n)$ time (see hypercube algorithm)
Theorem (Savitch’s theorem)

\[\text{NSPACE}(s(n)) \subseteq \text{DSPACE}(s(n)^2) \] for most useful functions \(s(n) = \Omega(\log n) \) including polynomials and poly-logarithms (space-constructible functions)

- Let \(M \) be an \(s(n) \)-space bounded Turing machine
- Size of configuration graph: \(2^{O(s(n))} \) vertices
- Use GAP to determine whether the accepting configuration is accessible from the initial configuration \(\rightarrow (\log 2^{O(s(n))})^2 = O(s(n)^2) \) space

Corollary

- \(\text{NL} \subseteq \text{DSPACE}(O(\log^2 n)) \)
- \(\text{NSPACE}(\log^{O(1)} n) = \text{DSPACE}(\log^{O(1)} n) (= \text{POLYLOGSPACE}) \)
- \(\text{DSPACE}(n^{O(1)}) = \text{NSPACE}(n^{O(1)}) (= \text{PSPACE}) \)

- Known that \(\mathcal{P} \neq \text{POLYLOGSPACE} \); conjectured that \(\mathcal{P} \nsubseteq \text{POLYLOGSPACE} \) and \(\text{POLYLOGSPACE} \nsubseteq \mathcal{P} \)
A language A is log-space reducible to language B ($A \leq_{\text{log}} B$) iff there exists a function τ computable in logarithmic space such that $x \in A$ iff $\tau(x) \in B$

Let C be a class of languages:
- B is log-space hard for C if $A \leq_{\text{log}} B$ for all $A \in C$
- B is log-space complete for C if B is log-space hard for C and $B \in C$
- \mathcal{P}-complete stands for “log-space complete for \mathcal{P}”

How can we conclude that if a problem is \mathcal{P}-complete and also in POLYLOGSPACE then $\mathcal{P} \subseteq \text{POLYLOGSPACE}$?

Naïve approach: given input x for some problem $A \in \mathcal{P}$, use the log-space machine M_{τ} that computes the log-space reduction from A to a \mathcal{P}-complete problem B, then run the machine M_B (that accepts B) on $M_{\tau}(x)$
A language A is log-space reducible to language B ($A \leq_{\log} B$) iff there exists a function τ computable in logarithmic space such that $x \in A$ iff $\tau(x) \in B$

Let C be a class of languages
- B is log-space hard for C if $A \leq_{\log} B$ for all $A \in C$
- B is log-space complete for C if B is log-space hard for C and $B \in C$
- \mathcal{P}-complete stands for “log-space complete for \mathcal{P}”

How can we conclude that if a problem is \mathcal{P}-complete and also in POLYLOGSPACE then $\mathcal{P} \subseteq$ POLYLOGSPACE?
- Naïve approach: given input x for some problem $A \in \mathcal{P}$, use the log-space machine M_τ that computes the log-space reduction from A to a \mathcal{P}-complete problem B, then run the machine M_B (that accepts B) on $M_\tau(x)$
- This approach fails (not enough space to store $M_\tau(x)$)
- However, we can modify the Turing machine M_τ to obtain M'_τ such that $M'_\tau(x, i) = \text{the } i\text{-th bit of } M_\tau(x)$
- Every transitions of M_B depends on a single input bit
- So instead of computing all the input $M_\tau(x)$ in advance, we use M'_τ on demand to obtain the particular bit needed by the current transition of M_B
The parallel computation thesis

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space used by a sequential machine

- Technically a conjecture rather than theorem because of the presence of “reasonable”
 - A “reasonable” parallel machine usually features restrictions on word size, instruction set, and parallelism
- Powerful theoretical tool

Corollary

All P-complete problems are inherently sequential unless \(P \subseteq \text{POLYLOGSPACE} \)

- It is likely that no \(P \)-complete problem is in POLYLOGSPACE
- Therefore according to the parallel computation thesis they cannot be solved in parallel in \(O(\log^{O(1)} n) \) time
- The only possibility remaining is that they can be solved in parallel in polynomial time → no better than solving them sequentially
Theorem

An $s(n)$ space-bounded deterministic Turing machine can be simulated by a parallel machine with the minimal instruction set, of word size $O(s(n))$, and in time $O(s(n) \log s(n))$.

Theorem

A $t(n)$ time bounded parallel machine with word size $w(n)$ can be simulated by a deterministic Turing machine using space $t(n)(w(n) + \log t(n)) + s(n)$, where $s(n)$ is the space requires for the Turing machine to simulate a single instruction of a processor of the parallel machine.
Restrictions on the instruction set:

- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where $t(n)$ is the running time of the parallel machine.
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above).
Restrictions on the instruction set:

- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where $t(n)$ is the running time of the parallel machine.
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above).

Restrictions on the number of processors:

- Most people regard a parallel machine as feasible if the number of processors is $n^{O(1)}$ (small machine) and the running time is $\log^{O(1)} n$ (fast machine).
- However, the parallel computation thesis holds even if the number of processors is $2^{O(t(n))}$ or even $2^{O(t(n))^{O(1)}}$.
Restricted on the instruction set:
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where $t(n)$ is the running time of the parallel machine.
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above).

Restricted on the number of processors:
- Most people regard a parallel machine as feasible if the number of processors is $n^{O(1)}$ (small machine) and the running time is $\log^{O(1)} n$ (fast machine).
- However, the parallel computation thesis holds even if the number of processors is $2^{O(t(n))}$ or even $2^{O(t(n))^{O(1)}}$.

Restricted on the word size:
- Normally the word size is $t(n)^{O(1)}$ though in practice the tighter restriction of $O(\log n)$ size is used for simplicity.