CS 467/567: The Parallel Computation Thesis

Stefan D. Bruda

Winter 2023

• A Turing machine *M* is s(n)-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if

- A Turing machine *M* is s(n)-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if
 - *M* is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 - The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 - A configuration of *M* is a tuple {(q, w, u<u>a</u>v, α)} where q is the current state, w is the (read only) input, u<u>a</u>v is the content of the work tape, and α is the output produced so far.
 - There is no configuration $(q, w, u\underline{a}v, \alpha)$ such that $(s, w, \varepsilon, \varepsilon) \vdash_{M}^{*} (q, w, u\underline{a}v, \alpha)$ and |uav| > s(|w|).
- DSPACE(s(n)) / NSPACE(s(n)) → the class of all the decision problems solved by s(n)-space bounded, deterministic/nondeterministic Turing machines

- A Turing machine *M* is s(n)-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if
 - *M* is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 - The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 - A configuration of *M* is a tuple {(q, w, u<u>a</u>v, α)} where q is the current state, w is the (read only) input, u<u>a</u>v is the content of the work tape, and α is the output produced so far.
 - There is no configuration $(q, w, u\underline{a}v, \alpha)$ such that $(s, w, \varepsilon, \varepsilon) \vdash_{M}^{*} (q, w, u\underline{a}v, \alpha)$ and |uav| > s(|w|).
- DSPACE(s(n)) / NSPACE(s(n)) → the class of all the decision problems solved by s(n)-space bounded, deterministic/nondeterministic Turing machines
- Shorthand: $L = DSPACE(\log n)$, $NL = NSPACE(\log n)$, POLYLOGSPACE = $\bigcup_{k \ge 1} DSPACE(\log^k n) = DSPACE(\log^{O(1)} n)$
 - Note in passing: DSPACE(s(n)) = DSPACE(s(n)/c) for all $c \in \mathbb{N}$

- A Turing machine *M* is s(n)-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if
 - *M* is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 - The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 - A configuration of *M* is a tuple {(q, w, u<u>a</u>v, α)} where q is the current state, w is the (read only) input, u<u>a</u>v is the content of the work tape, and α is the output produced so far.
 - There is no configuration $(q, w, u\underline{a}v, \alpha)$ such that $(s, w, \varepsilon, \varepsilon) \vdash_{M}^{*} (q, w, u\underline{a}v, \alpha)$ and |uav| > s(|w|).
- DSPACE(s(n)) / NSPACE(s(n)) → the class of all the decision problems solved by s(n)-space bounded, deterministic/nondeterministic Turing machines
- Shorthand: $L = DSPACE(\log n)$, $NL = NSPACE(\log n)$, POLYLOGSPACE = $\bigcup_{k \ge 1} DSPACE(\log^k n) = DSPACE(\log^{O(1)} n)$
 - Note in passing: DSPACE(s(n)) = DSPACE(s(n)/c) for all $c \in \mathbb{N}$
- L ⊆ NL ⊆ P; widely believed (but not proven) that all the inclusions are strict

THE GRAPH ACCESSIBILITY PROBLEM (GAP)

- GAP: Given a directed graph G = (V, E) and two vertices $u, v \in V$, determine whether there exists a path from u to v
- GAP \in NL:

```
Algorithm N-GAP(G = (V, E), u, v) returns \top/\bot:
```

 $x \leftarrow u$ $while x \neq v do$

```
1 nondeterministically guess a value y \in V
```

```
2 if (x, y) \notin E then return \bot
```

S x ← y

```
🧿 return T
```

• GAP \in DSPACE(log² *n*):

Algorithm D-GAP(G = (V, E), u, v) returns \top/\bot : return PATH(G, u, v, |V|)

Algorithm PATH(G = (V, E), i, j, k) returns \top/\bot :

- **()** if k = 0 then return i = j else if k = 1 then return $(i, j) \in E$
- **2** else return $\exists I \in V : PATH(i, I, \lceil k/2 \rceil) \land PATH(I, j, \lceil k/2 \rceil)$
 - $O(\log n)$ recursion depth and $O(\log n)$ storage per level = $O(\log^2 n)$ space

• GAP can be solved in parallel in $O(\log^2 n)$ time (see hypercube algorithm)

Theorem (Savitch's theorem)

 $NSPACE(s(n)) \subseteq DSPACE(s(n)^2)$ for most useful functions $s(n) = \Omega(\log n)$ including polynomials and poly-logarithms (space-constructible functions)

- Let *M* be an *s*(*n*)-space bounded Turing machine
- Size of configuration graph: 2^{O(s(n))} vertices
- Use GAP to determine whether the accepting configuration is accessible from the initial configuration $\rightarrow (\log 2^{O(s(n))})^2 = O(s(n)^2)$ space

Corollary

- $NL \subseteq DSPACE(O(\log^2 n))$
- $NSPACE(\log^{O(1)} n) = DSPACE(\log^{O(1)} n) (= POLYLOGSPACE)$
- $DSPACE(n^{O(1)}) = NSPACE(n^{O(1)}) (= PSPACE)$
- Known that $\mathcal{P} \neq \mathsf{POLYLOGSPACE}$; conjectured that $\mathcal{P} \notin \mathsf{POLYLOGSPACE}$ and $\mathsf{POLYLOGSPACE} \notin \mathcal{P}$

- A language A is log-space reducible to language B ($A \leq_{\log} B$) iff there exists a function τ computable in logarithmic space such that $x \in A$ iff $\tau(x) \in B$
- Let C be a class of languages
 - *B* is log-space hard for *C* if $A \leq_{\log} B$ for all $A \in C$
 - *B* is log-space complete for *C* if *B* is log-space hard for *C* and $B \in C$
 - $\mathcal{P}\text{-complete}$ stands for "log-space complete for \mathcal{P} "
- How can we conclude that if a problem is \mathcal{P} -complete and also in POLYLOGSPACE then $\mathcal{P} \subseteq$ POLYLOGSPACE?
 - Naïve approach: given input *x* for some problem *A* ∈ *P*, use the log-space machine *M*_τ that computes the log-space reduction from *A* to a *P*-complete problem *B*, then run the machine *M*_B (that accepts *B*) on *M*_τ(*x*)

- A language A is log-space reducible to language B ($A \leq_{\log} B$) iff there exists a function τ computable in logarithmic space such that $x \in A$ iff $\tau(x) \in B$
- Let C be a class of languages
 - *B* is log-space hard for *C* if $A \leq_{\log} B$ for all $A \in C$
 - *B* is log-space complete for *C* if *B* is log-space hard for *C* and $B \in C$
 - $\mathcal{P}\text{-complete}$ stands for "log-space complete for \mathcal{P} "
- How can we conclude that if a problem is \mathcal{P} -complete and also in POLYLOGSPACE then $\mathcal{P} \subseteq$ POLYLOGSPACE?
 - Naïve approach: given input *x* for some problem *A* ∈ *P*, use the log-space machine *M*_τ that computes the log-space reduction from *A* to a *P*-complete problem *B*, then run the machine *M*_B (that accepts *B*) on *M*_τ(*x*)
 - This approach fails (not enough space to store $M_{\tau}(x)$)
 - However, we can modify the Turing machine M_{τ} to obtain M'_{τ} such that $M'_{\tau}(x,i)$ = the *i*-th bit of $M_{\tau}(x)$
 - Every transitions of M_B depends on a single input bit
 - So instead of computing all the input $M_{\tau}(x)$ in advance, we use M'_{τ} on demand to obtain the particular bit needed by the current transition of M_B

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space used by a sequential machine

- Technically a conjecture rather than theorem because of the presence of "reasonable"
 - A "reasonable" parallel machine usually features restrictions on word size, instruction set, and parallelism
- Powerful theoretical tool

Corollary

All P-complete problems are inherently sequential unless $\mathcal{P} \subseteq \text{POLYLOGSPACE}$

- It is likely that no \mathcal{P} -complete problem is in POLYLOGSPACE
- Therefore according to the parallel computation thesis they cannot be solved in parallel in O(log^{O(1)} n) time
- The only possibility remaining is that they can be solved in parallel in polynomial time → no better than solving them sequentially

Theorem

An s(n) space-bounded deterministic Turing machine can be simulated by a parallel machine with the minimal instruction set, of word size O(s(n)), and in time $O(s(n) \log s(n))$

Theorem

A t(n) time bounded parallel machine with word size w(n) can be simulated by a deterministic Turing machine using space $t(n)(w(n) + \log t(n)) + s(n)$, where s(n) is the space requires for the Turing machine to simulate a single instruction of a processor of the parallel machine

• Restrictions on the instruction set:

- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where t(n) is the running time of the parallel machine
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above)

• Restrictions on the instruction set:

- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where t(n) is the running time of the parallel machine
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above)

Restrictions on the number of processors:

- Most people regard a parallel machine as feasible if the number of processors is n^{O(1)} (small machine) and the running time is log^{O(1)} n (fast machine)
- However, the parallel computation thesis holds even if the number of processors is 2^{O(t(n))} or even 2^{O(t(n))^{O(1)}}

• Restrictions on the instruction set:

- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where t(n) is the running time of the parallel machine
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above)

Restrictions on the number of processors:

- Most people regard a parallel machine as feasible if the number of processors is n^{O(1)} (small machine) and the running time is log^{O(1)} n (fast machine)
- However, the parallel computation thesis holds even if the number of processors is 2^{O(t(n))} or even 2^{O(t(n))^{O(1)}}

Restrictions on the word size

• Normally the word size is $t(n)^{O(1)}$ though in practice the tighter restriction of $O(\log n)$ size is used for simplicity