
CS 467/567, Assignment 2

Answers

This assignment is individual. Submit your solutions by email as a single document typeset to
PDF. I recommend that you solve the problems by yourself with no external references, but if
references are used then they must be provided and also cited in the text.

Problem 1: Approximate Maximum Clique

Let � = (+, �) be an undirected graph. For : ≥ 1 define �(:) = (+ (:) , �(:)) such that + () =

{(E1 , E2, . . . , E:) : E8 ∈ +, 1 ≤ 8 ≤ :} and ((E1 , E2, . . . , E:), (F1, F2, . . . , F:)) ∈ �
(:) iff either (E8 , F8) ∈

� or E8 = F8 for all 1 ≤ 8 ≤ :.

1. Prove |�(:)| = |� | : , where �(:) and � are the maximum cliques of �(:) and �, respectively.

Answer: The following general property will support the proof:

Lemma 1 Define the product of two graphs �1 = (+1, �1) and �2 = (+2 , �2) as � = (+1 × +2, �)

such that ((E1 , E2), (F1, F2)) ∈ � iff (E1 , F1) ∈ �1 or E1 = F1, and (E2 , F2) ∈ �2 or E2 = F2. Let
�1, �2, and � be the maximum cliques for �1, �2, and �, respectively. Then �1 × �2 = � (and thus
|�1| × |�2| = |� |).

Proof. It is immediate that �1 × �2 is a clique of � (and so �1 × �2 ⊆ �). Indeed, let
E1 ∈ �1 and E2 ∈ �2. We have (E1, F1) ∈ �1 for all F1 ∈ �1 and (E2 , F2) ∈ �2 for all F2 ∈ �2

(by the definition of a clique) and so ((E1 , E2), (F2, F2)) ∈ � for all (F1, F2) ∈ �1 × �2 (by the
definition of �); �1 × �2 is therefore a clique.

It is also easy to see that � ⊆ �1 × �2. Indeed, suppose that there exist a vertex (E1, E2) ∈ �

such that E1 ∉ �1 (the case E2 ∉ �2 is similar). Since E1 ∉ �1 there exists a vertex F1 ∈ �1

such that (E1 , F1) ∉ �1. If this is so then ((E1 , E2), (F1, D)) cannot be an edge in � no matter
what is the value of D (by the definition of �) and so (E1 , E2) ∉ �, a contradiction.

We now proceed to the main proof by induction over :. For : = 1 we have �(1) = � and so
�(1) = �. It is therefore immediate that |�(1)| = |� |1. Note now that the Cartesian product
is associative within a natural bĳection and so �(:) = �(:−1) × � (with the product of two
graphs as defined in Lemma 1). Therefore |�(:)| = |�(:−1)| × |� | by Lemma 1. By inductive
assumption we also have that |�(:−1)| = |� | :−1, so |�(:)| = |� | :−1 × |� | = |� | : , as desired.

1

2. Argue that the existence of an approximation algorithm for finding the maximum clique with
a constant approximation ratio implies the existence of a polynomial-time approximation
scheme for finding the maximum clique.

Answer: Let � be an polynomial �-approximation algorithm for clique. We then use � as
follows: for a fixed : and an input graph � we construct �(:), we launch � on �(:) obtaining
�(:), and then we obtain � from �(:). Let �(:)∗ and �∗ be the maximal clique for �(:) and �,
respectively. We have:

|�(:)∗|

|� : |
≤ � by the definition of �, therefore:

|�∗| :

|� | :
≤ � by Question 1, therefore:

|�∗|

|� |
≤ �1/:

The end result is a �1/:-approximation scheme (which has an approximation ratio arbitrarily
close to 1 for an arbitrarily large :).

Let now = be the number of vertices in � (and so the number of edges is less than =2). A
trivial algorithm for computing �(:) takes $(=$(:)) time, which is polynomial in = (but not
in :). � takes polynomial time by definition. Extracting � out of �(:) is also immediate: we
just scan all the vertices (E1 , E2, . . . , E:) ∈ �

∗ and add all the E8 to the set �. This takes linear
time in |�(:)| and so once more $(=$(:)) time. In all, the running time is polynomial in = and
exponential in :.

Overall we have an approximation scheme that is polynomial (but not fully polynomial).

Note that the answer to this question does not say anything about how easy to approximate
Clique is. It is already well known (since at least 1978) that a fully polynomial-time approximation
scheme cannot not exist, but how about a polynomial-time approximation scheme? The question
at hand merely says that there cannot be a middle ground: the problem either has a polynomial-
time approximation scheme or does not have any polynomial-time approximation algorithm with
a constant approximation ratio. To date the best known approximation algorithm for Clique has
an approximation ratio of $(=(log log =)2/log3

=), which is not constant and so does not imply
a polynomial-time approximation scheme. There appear to be a relatively recent (2000s) result
showing that the approximation ration cannot be better than $(=1−�) for any � > 0, but I did not
have the time to check it out.

Problem 2: Linear Inequality Feasibility

I claimed in class that the original linear programming problem (an optimization problem) turns
out to be no harder than the apparently simpler (decision) problem of determining whether a

2

certain simplex is empty (that is, just finding a point in the simplex, not necessarily the optimal
one). This question will prove my claim.

Given a set of < linear inequalities over = variables, the linear inequality feasibility problem
asks whether there exists an assignment of the variables that satisfies all the linear inequalities
simultaneously.

1. Prove that we can use an algorithm for linear programming to solve linear inequality feasi-
bility problems. The number of variables and constraints used in the linear programming
problem must be polynomial in = and <, and the slowdown must be polynomial.

Answer: The linear programming algorithm will return the optimal point in the simplex.
In the linear inequality feasibility problem we are happy with any point in the simplex; as
long as the simplex is not empty we have a positive answer. Running a liner programming
algorithm with the objective function 0 (or indeed any other constant) will do exactly that.
The input for the linear programming algorithm features = variables and < constraints.

2. Prove that we can use an algorithm for the linear inequality feasibility problem to solve linear
programming problems. The number of variables and linear inequalities must be polynomial
in the number of variables and constraints of the linear program, and the slowdown must be
(you guessed it) polynomial.

Answer: Assume that the linear inequality feasibility algorithm will produce a point in
addition to the yes answer. This is a reasonable assumption given that such a point needs to
be computed to justify a positive answer.

Now we run the linear inequality feasibility algorithm on each possible pair of constraints
and record all the points thus found. This results in an <2 (polynomial) slowdown and no
more than <2 points. We then compute the objective function for all the points and return
the one with a maximum such an objective function. Each such a computation takes $(=)

time. That the correct answer is returned is given by the fact that the optimum is always a
vertex of the simplex. The overall slowdown is quadratic in < and linear in =.

3

