
Name

Student Number

HAND IN
answers recorded
on question paper

BISHOP’S UNIVERSITY

Department of Computer Science

CS 467/567

FIRST EXAMINATION

26 February 2025

Instructor: Stefan D. Bruda

Instructions

• This examination is 80 minutes in length and is open book. You are allowed to use any documentation you
like. Electronic devices are permitted only if they demonstrably have no communication capabilities.
You are not allowed to share material with your colleagues. Any violation of these rules will result in the
complete forfeiture of the examination.

• There is no accident that the total number of marks add up to the length of the test in minutes. The
number of marks awarded for each question should give you an estimate on how much time you are
supposed to spend answering that question.

• To obtain full marks provide all the pertinent details. This being said, do not give unnecessarily long
answers. In principle, all your answers should fit in the space provided for this purpose. If you need
more space, use the back of the pages or attach extra sheets of paper. However, if your answer is not
(completely) contained in the respective space, clearly mention within this space where I can find it.

• Make sure that your name and student number appear on top of each sheet which is not securely
stapled to the booklet (just in case). This also applies to any sheet which you detach from the booklet.

• The number of marks for each question appears in square brackets right after the question number.
If a question has sub-questions, then the number of marks for each sub-question is also provided.

When you are instructed to do so, turn the page to begin the test.

1 15 / 15

2 a,b 15 / 15
3 a,b,c 20 / 20
4 a,b 15 / 15
5 5 / 5
6 10 / 10

Total: 80 / 80 = 20 / 20

1. [15] The Hamiltonian path problem is stated as follows: Given a graph �, determine whether
there exists a path that includes all the vertices of � exactly once. Recall that the Hamiltonian

cycle problem requires the existence of a cycle (that includes all the vertices of � exactly once)
rather than a path. We note that Hamiltonian path is a generalization of Hamiltonian cycle

given that the Hamiltonian cycle (E1 , . . . , E=) is also a Hamiltonian path: sure there is an edge
between E= and E1 (which completes the cycle), but nobody requires that we consider it so
we can ignore that vertex and so (E1 , . . . , E=) becomes a path (which is clearly Hamiltonian if
the cycle was Hamiltonian to begin with since it contains the same sequence of vertices).

Given the above observation it is tempting (but incorrect) to state that the identity function
is a polynomial reduction from Hamiltonian cycle to Hamiltonian path. Explain why this
is not the case.

Answer:

The identity function is clearly computable in polynomial time (there is nothing to compute

so the “transformation” takes no time at all). In order for identity to be a reduction it must

hold that � has a Hamiltonian cycle iff � has a Hamiltonian path. The “if” part clearly holds

as explained above (we remove an edge from a cycle and it becomes a path containing the

same vertices). The “only if” part however does not hold, since it is possible for a graph

to have a Hamiltonian path without having a Hamiltonian cycle. Indeed, a path must be

closed in order to become a cycle by one extra edge, yet the appropriate edge may not exist.

Consider for example the graph ({E1 , E2, E3} , {(E1, E2), (E2 , E3)}): it clearly has a Hamiltonian

path (namely, 〈E1 , E2, E3〉), yet this path cannot be converted into a Hamiltonian cycle since

the edge (E3 , E1) does not exist (and it is easy to see that there is no Hamiltonian cycle at all

in this graph).

Page 1 of 8

2. [15] The Quantified Boolean Formula problem (QBF for short) is a generalization of SAT
and is formulated as follows: Given a set - = {G1, G2, . . . , G=} of Boolean variables and a
quantified Boolean formula over - of formQ1G1Q2G2 . . .Q=G=) withQ8 ∈ {∀, ∃} and) a formula
in conjunctive normal form (as for SAT), find whether the given formula is satisfiable.

QBF instances include universal quantifiers whereas in SAT all the variables are existentially
quantified. For example both formulae below are instances of QBF but only the first is an
instance of SAT:

∃G1 ∃G2 ∃G3 ∃G4 : (G1 ∨ ¬G3 ∨ G4) ∧ (¬G2 ∨ G3 ∨ ¬G4)

∃G1 ∀G2 ∃G3 ∀G4 : (G1 ∨ ¬G3 ∨ G4) ∧ (¬G2 ∨ G3 ∨ ¬G4)

In a SAT instance (as seen in class) we further remove the quantifiers (∀ and ∃) since there is
only one of them.

(a) [10] Find a polynomial reduction from SAT to QBF. Prove that your function is a reduc-
tion and can be computer in polynomial time.

Answer:

SAT being an particular case of QBF, a reduction is just the identity function, with

the addition that we need to add the quantifiers (that are implicit in SAT). We end up

with �(#) = ∃G1∃G2 . . .∃G=# for every SAT instance # over {G1, G2, . . . , G=}. That this

is indeed a reduction follows immediately from the fact that QBF is a generalization of

SAT.

The reduction is clearly polynomial: we need to copy the original formula # (which

takes linear time) and then add the = groups ∃G8 in front (which also takes linear time

since the number of clauses is no less than twice the number of variables; indeed, each

clause contains at least one literal which is either a variable or its negation).

.

Page 2 of 8

(b) [5] What is the consequence of having a polynomial reduction from SAT to QBF as in
Question 2a? Explain.

Answer:

Since we have a reduction from SAT (which is NP-complete) to QBF we conclude that

QBF is NP-hard. However tempting it may be to conclude that, it is not necessary

that QBF is NP-complete, since QBF is not necessarily in NP (actually QBF is PSPACE-

complete and so unlikely to be in NP).

Page 3 of 8

3. [20] The MAX-SAT problem is formulated as follows: Giver a not necessarily satisfiable
SAT formula (conjunction of disjunctive clauses), find an interpretation that maximizes the
number of true clauses in the formula.

Let =(; ,))be the number of clauses from the formula) containing the literal ;. The following
greedy strategy offers an approximation algorithms for MAX-SAT: For an input formula),
pick a literal ; with maximum =(; ,)) and set the variable in ; such that ; is true (and so all the

clauses that contain ; are satisfied). Delete from) all the clauses containing ; and ;. Repeat
until) contains no literals.

(a) [5] Show that the above strategy can be implemented in polynomial time.

Answer:

Let = be size of the input (i.e., the number of literals in)). Note first that the number

of clauses in the formula is also $(=) (since each clause contains at least one literal).

Finding the literal with maximum =(; ,)) can be done through a scan of the formula

that is, in $(=) time (keeping one counter for each variable). Deleting clauses is also

done through a scan and so in $(=) time. One iteration thus takes $(=) + $(=) = $(=)

time. In the worst case each iteration will only delete one clause and so $(=) iterations

are necessary. It follows that the processing is done in $(=) × $(=) = $(=2) time.

(b) [5] What is the upper bound for the number of true clauses in an exact (optimal) solution
for MAX-SAT?

Hint. What happens if the formula is satisfiable?

Answer:

If the formula is satisfiable then there exists an interpretation that makes all the clauses

in the formula true and so the number of true clauses in the optimal solution to MAX-

SAT equals the number of clauses in the formula. Since there can be no more true

clauses than there are clauses in the formula this is a (tight) upper bound.

Page 4 of 8

(c) [10] Prove that that the above strategy is a 2-approximation algorithm for MAX-SAT.

Hint. Let the formula) contain : variables and < clauses. Show that the above strategy
makes at least </2 clauses true by induction over :. Use the fact that that when we pick

the literal ; if <+ clauses contain ; and <− clauses contain ; then <+ ≥ <− (for otherwise
we would have picked ;).

Answer:

The induction mentioned in the hint goes like this:

Basis: For : = 1 the only literals are G1 and G1. Picking the literal with the maximum

number of occurrences will certainly make more than half the clauses true (else it will

not be the literal with the maximum number of occurrences).

Inductive hypothesis: The algorithm satisfies at least <′/2 of the <′ clauses from a

formula over : − 1 variables.

Inductive step: We pick ; with maximum =(; ,)). We have <+ clauses that are true

and after deleting clauses we are left with < − <+ − <− clauses over : − 1 variables.

By induction hypothesis at least (< − <+ − <−)/2 of these clauses are true, so overall

at least (< − <+ − <−)/2 + <+ clauses are true. We have (< − <+ − <−)/2 + <+
=

(< − <+ − <− + 2<+)/2 = (< + <+ − <−)/2 ≥ </2 (since <+ ≥ <−).

In all < is an upper bound for the cost of the exact solution (see previous question) and

</2 is a lower bound for the cost of the approximate solution, so the approximation

ratio of the algorithm is no worse than </(</2) = 2.

Page 5 of 8

4. [15] Recall that the Minimum vertex cover problem is the problem of finding the minimum
vertex cover of a given graph � = (+, �).

Let + = {E1, E2, . . . , E=}. We define a set � ⊆ + using the variables G8 as follows: G8 = 1

whenever E8 ∈ � and G8 = 0 otherwise, 1 ≤ 8 ≤ =. Consider then the following optimization
problem over the variables G8, 1 ≤ 8 ≤ =:

Minimize: G1 + G2 + · · · + G=
Subject to: G8 + G 9 ≥ 1 for each (8 , 9) ∈ �

G8 ∈ {0, 1} for each E8 ∈ +

(a) [10] Is the above optimization problem (over the variables G8) equivalent to Minimum

vertex cover? Justify your answer.

Answer:

The two problems are equivalent.

The second constraint specifies a subset � of + . Indeed, the only possible values for

G8 are 0 and 1, which means that the vertex E8 can either be in � or not (with no other

alternative).

The first constraint specifies that � is a vertex cover. Indeed, G8 + G 9 ≥ 1 means that at

least one of the two variables G8 and G 9 are assigned 1 and so either E8 or E 9 (or both) are

in �. This in turn means that � covers the edge (E8 , E 9). Since we have such a constraint

for every edge in the graph, � covers all the edges and so is a vertex cover.

Note now that G1 + G2 + · · · + G= = |� | and so minimizing G1 + G2 + · · · + G= minimizes

the size of �.

Putting everything together we have that � is a vertex cover (because of the constraints)

and |� | is minimized (because of the objective function), and so � is a minimum vertex

cover.

Page 6 of 8

(b) [5] Is the above optimization problem (over the variables G8) a linear programming prob-
lem? If not, can the constraints be reformulated so that it becomes a linear programming
problem? Justify your answer (one way or another).

Answer:

The problem is not a linear programming problem because the constraint G8 ∈ {0, 1}

is not a linear constraint. Furthermore, it is not possible to construct linear constraints

equivalent to this constraint. Indeed, a linear constraint can only define a hyper line or

a hyper half plane, while G8 ∈ {0, 1} defines a couple of points (which cannot constitute

a hyper line, let alone a hyper half plane).

5. [5] Given an example (graphical or otherwise) or a linear program for which the simplex
region is not bounded but the optimal objective value is finite. Explain why is this the case.

Answer:

We can make the simplex unbounded in one direction and the objective function maximized

in the other direction. For example we make the simplex unbounded to the right and the

objective function maximized to the left, as follows:

Maximize −G1

subject to the constraints: G1 ≥ 3, G2 ≤ 5, and G2 ≥ 0

Alternatively, we can have an objective function that only depends on some variables and so

the other variables can be unbounded and we still have a finite optimal objective value.

Page 7 of 8

6. [10] Let % = 〈?0 , ?1, . . . , ?=−1〉 be a sequence of = points. Someone claims that the following
algorithms checks whether % describes a convex polygon in counterclockwise order:

algorithm Is-Convex(〈?0 , ?1, . . . , ?=−1〉):
for 8 = 0 to = − 1 do

if (?8 , ?(8+1) mod = , ?(8+2) mod =) form a right turn then
return False

return True

Disprove this claim.

Hint. A False return definitely means that the polygon is not convex. Try to construct a
sequence of points that does not even form a polygon yet only makes left turns.

Answer:

We can keep making right turns until an edge of the polygon intersects a previous edge. The

moment this happens the polygon is not convex anymore. Here is an example:

?0 ?1

?2?3

?4 ?5

?6?7

Page 8 of 8

