
CS 467/567: Introduction to Parallel Algorithms

Stefan D. Bruda

Winter 2020

PARALLEL MODELS: IT ALL STARTS FROM THE RAM

The Random Access Machine (RAM)

...

Memory access
unit (MAU)

Processor 1

Programming language: pseudocode

CS 467/567 (S. D. Bruda) Winter 2020 1 / 14

PARALLEL MODELS: THE PRAM

The Parallel Random Access Machine (PRAM)

Conflict resolution for memory access:

...

Memory access
unit (MAU)

Processor 1 Processor nProcessor 2 ...

EREW, CREW

CRCW (Priority, Common, Combining)

Programming language: pseudocode
Extra statement:
for i “ 1 to n do in parallel { statements parameterized on processor pi }

CS 467/567 (S. D. Bruda) Winter 2020 2 / 14

PARALLEL MODELS: INTERCONNECTION NETWORKS

The Interconnection network

Interconnection

Processor 1 Processor nProcessor 2

...

Memory access
unit (MAU)

...

Memory access
unit (MAU)

...

Memory access
unit (MAU)

...

Programming language: pseudocode
Extra statements: send and receive (via point-to-point connections only)

CS 467/567 (S. D. Bruda) Winter 2020 3 / 14



PERFORMANCE OF PARALLEL ALGORITHMS

We charge one time unit for each elementary computation step (like in
the sequential case)
We also charge for moving data from one processor to another = routing
steps

Generally the cost of moving data depends on the distance between
processors

Routing cost for shared memory:
Uniform analysis: constant time for memory access
Discriminating analysis: OplogMq time for accessing one word in memory of
size M

Routing for interconnection networks: Op1q time per direct link traversed

Putting all these costs together we obtain the running time t : N Ñ N

Usually worst case analysis

CS 467/567 (S. D. Bruda) Winter 2020 4 / 14

PERFORMANCE OF PARALLEL ALGORITHMS CONT’D

Measures of parallel performance: speedup Sp : N Ñ N, efficiency
Ep : N Ñ N, and cost cp : N Ñ N

Sp “ t1
tp

Ep “ Sp

p
cp “ p ˆ tp

tp : N Ñ N is the time taken by the p-processor algorithm being analyzed to
solve the problem
t1 : N Ñ N is the time taken by the best known sequential algorithm to solve
the same problem
Speedup and efficiency are usually (but not always) invariable with the input
size

Theorem (Speedup theorem)
In the classical theory of parallel algorithms Sp ď p and so Ep ď 1

A parallel algorithm with Sp “ p (or Ep “ 1, or cp “ t1) is optimal
If Sp “ Op1q then the running time of the parallel algorithm is just as bad
as the running time of a sequential algorithm

This is believed to happen to all the P-complete problems
CS 467/567 (S. D. Bruda) Winter 2020 5 / 14

PERFORMANCE OF PARALLEL ALGORITHMS CONT’D

Another important measure is the slowdown = effect on running time of
reducing the number of processors

Theorem (Slowdown theorem)
In the classical theory of parallel algorithms if a certain computation can be
performed with p processors in time tp and with q ă p processors in time tq
then tp ď tq ď tp ` ptp{q

Number of processors also important
Number of processors can or cannot be optimal

It is possible that an analysis of the algorithm reveals that a number of
processors are idle most of the time and so can be discarded without affecting
the performance

Sometimes the optimal running time can only be achieved with a certain
number of processors
Sometimes reducing the number of processors below a certain threshold
results in an unacceptable slowdown

CS 467/567 (S. D. Bruda) Winter 2020 6 / 14

PARALLEL MODELS: COMBINATIONAL CIRCUITS

Processors capable of performing the usual logic and arithmetic
operations on Oplog nq-sized words but having only a constant number of
internal registers
The processors are connected to each other as vertices in a directed
acyclic graph

Vertices with no incoming edges are input processors
Vertices with no outgoing edges are output processors

The processors can be viewed as aligned into columns, one column per
distance from the input nodes

It is convenient (though not strictly necessary) to have all the output vertices
in the rightmost column

Performance measures for combinational circuits:
The depth of the circuit (or number of columns)
The width of the circuit (the number of processors in the largest column)

The combinational circuit represents the unfolded computation of an
“usual” parallel machine (depth = running time; width = number of
processors; cost = depth ˆ width)

CS 467/567 (S. D. Bruda) Winter 2020 7 / 14



PARALLEL PREFIX COMPUTATIONS

Problem: Given an array x with n values, find all the prefix sums
si “ ∑i

k“0 xi , 0 ď i ă n, where the summation is done according to an
associative binary operation ˝
Algorithm RAM PREFIX px0...n´1q returns s0...n´1:

1 s0 Ð x0
2 for i “ 1 to n ´ 1 do:

1 si Ð si´1 ˝ xi

Algorithm PRAM PREFIX px0...n´1q returns s0...n´1:
1 for i “ 0 to n ´ 1 do in parallel:

1 si Ð xi
2 for j “ 0 to log n ´ 1 do:

1 for i “ 2j to n ´ 1 do in parallel:
2 si Ð si´2j ˝ si

Sequential time: t1pnq “ Opnq (also a lower bound); parallel time:
tnpnq “ Oplog nq
Cost: cnpnq “ Opn log nq (PRAM Prefix is not optimal)

CS 467/567 (S. D. Bruda) Winter 2020 8 / 14

AN OPTIMAL PRAM ALGORITHM FOR PREFIX

COMPUTATIONS

We exploit the associativity of ˝
Let k “ log n and m “ n{k (rounded); we use an m-processor algorithm
All the processors Pi , 0 ď i ă m use in parallel RAM PREFIX to compute
he prefix sums sik , sik`1, . . . , spi`1qpk´1q, where
sik`j “ xik ˝ xik`1 ˝ ¨ ¨ ¨ ˝ xik`j

Opkq “ Oplog nq time

Now PRAM PREFIX is used on all the processors to compute the prefix
sum of the sequence ⟨sk´1, s2k´1, . . . , sn´1⟩; the result is put back into
⟨sk´1, s2k´1, . . . , sn´1⟩

At the end of this step sik´1 will be replaced with sk´1 ˝ s2k´1 ˝ ¨ ¨ ¨ ˝ sik´1

Oplogmq “ Oplogpn{ log nqq time

Fnally, all processors Pi , 1 ď i ă m perform sequentially
sik`j Ð sik´1 ˝ sik`j for all 0 ď j ď k ´ 2

Executed sequentially by all processors (except P0)
Opkq “ Oplog nq time

CS 467/567 (S. D. Bruda) Winter 2020 9 / 14

AN OPTIMAL PRAM ALGORITHM FOR PREFIX

COMPUTATIONS (CONT’D)

tpnq “ Oplog nq ` Oplogpn{ log nqq ` Oplog nq “ Oplog nq and so
cpnq “ Opnq

The algorithm also illustrated how an m-processor PRAM can be made to
run an algorithm designed to run on n processors, n ą m

This “self-simulation” is extremely useful in practice
It shows how to solve a problem with less that the number of processors
required theoretically

A certain storage overhead is necessary for this algorithm as opposed to
the previous

If optimality is not a concern (e.g., we have n processors anyway) then the
original algorithm is preferable

CS 467/567 (S. D. Bruda) Winter 2020 10 / 14

WHY PREFIX COMPUTATIONS?

Sequentially the prefix computation performs a “sweep” of the input
sequence; such a sweep can be accomplished in many other ways (some
times more efficient!)
A parallel algorithm however performs the “sweep” in an optimal amount
of time using prefix computations!
Case in point: maximum sum subsequence – given a sequence of (not
necessarily positive) integers ⟨x0, x1, . . . , xn´1⟩ find two indices u and v
such that xu ` ¨ ¨ ¨ ` xv is maximal

Algorithm RAM MAX SUM px0...n´1q returns u, v :
1 Maxseen Ð x0; u Ð 0; v Ð 0; Maxhere Ð x0; q Ð 0
2 for i “ 0 to n do:

1 if Maxhere ě 0 then Maxhere Ð Maxhere ` xi
else Maxhere Ð xi ; q Ð i

2 if Maxseen ă Maxhere then Maxseen Ð Maxhere; u Ð q; v Ð i

One traversal of the sequence, linear complexity, also remember CS 327

CS 467/567 (S. D. Bruda) Winter 2020 11 / 14



WHY PREFIX COMPUTATIONS? (CONT’D)

A parallel algorithms solving the maximum sum subsequence cannot do
this kind of traversal efficiently (the traversal is inherently sequential)
We retort to prefix computations:

Input xi -4 2 6 -1 -7 4 2 -1
Prefix sum si -4 -2 4 3 -4 0 2 1

Modified prefix sum mi 4 4 4 3 2 2 2 1
with max as ˝ ai 2 2 2 3 6 6 6 7

bi Ð mi ´ si ` xi bi 4 8 6 -1 -1 6 2 -1

L Ð max0ďiăm bi ñ L “ 8 (modified prefix sum, as above)
u is the index at which L was found ñ u “ 1
v Ð au ñ v “ 2

Optimal algorithm for n{ log n processors

CS 467/567 (S. D. Bruda) Winter 2020 12 / 14

POLYNOMIAL INTERPOLATION

Problem: Given n ` 1 pairs of numbers pxi , yiq, 0 ď i ď n such that
x0 ă x1 ă ¨ ¨ ¨ ă xn, find a polynomial hpxq such that hpxiq “ yi , 0 ď i ď n
Newton’s interpolation method:

hpxq “ y0 ` Y01px ´ x0q ` Y02px ´ x0qpx ´ x1q
` ¨ ¨ ¨ ` Y0npx ´ x0qpx ´ x1q ¨ ¨ ¨ px ´ xnq

where Yii “ yi and Yipi`jq “ Yipi`j´1q ´ Ypi`1qpi`jq
xi ´ xi`j

Solving the recursion for Y0i , 0 ď i ď n yields

Y0i “ y0

X01X02 ¨ ¨ ¨ X0i
` y1

X10X12 ¨ ¨ ¨ X1i
` ¨ ¨ ¨ ` yi

Xi0Xi1 ¨ ¨ ¨ Xipj´1q

where Xij “ xi ´ xj for all i ‰ j
Denominators can be computed using prefix sum with the scalar
multiplication operation
One prefix computation computes all the denominators for numerator yj

CS 467/567 (S. D. Bruda) Winter 2020 13 / 14

ARRAY PACKING

Problem: Given an array X of size n with some values therein labeled,
bring all the labeled values into contiguous positions
Sequential algorithm (optimal Opnq time): Two pointers in the array q and
r with initial values q “ 1 and r “ n

1 q advances to the right if Xq is labeled
2 r advances to the left if Xr is unlabeled
3 Xq and Xr are switched whenever Xq is unlabeled and Xr is labeled

The labeled elements are all in adjacent positions in the first part of the
array as soon as q ě r
Parallel algorithm:

1 Create a secondary array S of size n such that Si “ 1 if Xi is labeled and
si “ 0 otherwise

2 Compute a prefix sum over S
3 Move each labeled value Xi to index Si

Oplog nq running time on n{ log n processors (optimal)

CS 467/567 (S. D. Bruda) Winter 2020 14 / 14


