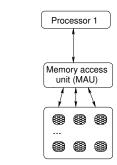
• The Random Access Machine (RAM)



• Programming language: pseudocode

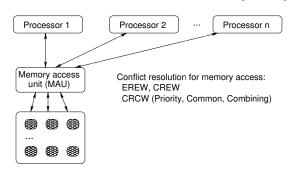
PARALLEL MODELS: THE PRAM

• The Parallel Random Access Machine (PRAM)

CS 467/567: Introduction to Parallel Algorithms

Stefan D. Bruda

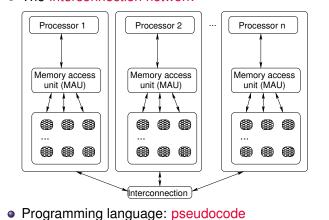
Winter 2020



Parallel models: Interconnection networks

CS 467/567 (S. D. Bruda)

The Interconnection network



- Programming language: pseudocode
 - Extra statement:
 - for i = 1 to *n* do in parallel { statements parameterized on processor p_i }

• Extra statements: send and receive (via point-to-point connections only)

Winter 2020

- We charge one time unit for each elementary computation step (like in the sequential case)
- We also charge for moving data from one processor to another = routing steps
 - Generally the cost of moving data depends on the distance between processors
- Routing cost for shared memory:
 - Uniform analysis: constant time for memory access
 - Discriminating analysis: $O(\log M)$ time for accessing one word in memory of size M
- Routing for interconnection networks: O(1) time per direct link traversed
- Putting all these costs together we obtain the running time $t : \mathbb{N} \to \mathbb{N}$
 - Usually worst case analysis

• Measures of parallel performance: speedup $S_p : \mathbb{N} \to \mathbb{N}$, efficiency $E_p : \mathbb{N} \to \mathbb{N}$, and cost $c_p : \mathbb{N} \to \mathbb{N}$

$$S_{
ho} = rac{t_1}{t_{
ho}} \qquad E_{
ho} = rac{S_{
ho}}{
ho} \qquad c_{
ho} =
ho imes t_{
ho}$$

- *t_p* : ℕ → ℕ is the time taken by the *p*-processor algorithm being analyzed to solve the problem
- $t_1 : \mathbb{N} \to \mathbb{N}$ is the time taken by the best known sequential algorithm to solve the same problem
- Speedup and efficiency are usually (but not always) invariable with the input size

Theorem (Speedup theorem)

In the classical theory of parallel algorithms $S_p \leq p$ and so $E_p \leq 1$

- A parallel algorithm with $S_p = p$ (or $E_p = 1$, or $c_p = t_1$) is optimal
- If $S_p = O(1)$ then the running time of the parallel algorithm is just as bad as the running time of a sequential algorithm
 - This is believed to happen to all the P-complete problems

Winter 2020 5 / 14

4 / 14

Winter 2020

PERFORMANCE OF PARALLEL ALGORITHMS CONT'D

 Another important measure is the slowdown = effect on running time of reducing the number of processors

Theorem (Slowdown theorem)

In the classical theory of parallel algorithms if a certain computation can be performed with p processors in time t_p and with q < p processors in time t_q then $t_p \leq t_q \leq t_p + pt_p/q$

• Number of processors also important

- Number of processors can or cannot be optimal
 - It is possible that an analysis of the algorithm reveals that a number of processors are idle most of the time and so can be discarded without affecting the performance
- Sometimes the optimal running time can only be achieved with a certain number of processors
- Sometimes reducing the number of processors below a certain threshold results in an unacceptable slowdown

PARALLEL MODELS: COMBINATIONAL CIRCUITS

- Processors capable of performing the usual logic and arithmetic operations on O(log n)-sized words but having only a constant number of internal registers
- The processors are connected to each other as vertices in a directed acyclic graph
 - Vertices with no incoming edges are input processors
 - Vertices with no outgoing edges are output processors
- The processors can be viewed as aligned into columns, one column per distance from the input nodes
 - It is convenient (though not strictly necessary) to have all the output vertices in the rightmost column
- Performance measures for combinational circuits:
 - The depth of the circuit (or number of columns)
 - The width of the circuit (the number of processors in the largest column)
- The combinational circuit represents the unfolded computation of an "usual" parallel machine (depth = running time; width = number of processors; cost = depth × width)

CS 467/567 (S. D. Bruda)

CS 467/567 (S. D. Bruda)

• Problem: Given an array *x* with *n* values, find all the prefix sums $s_i = \sum_{k=0}^{i} x_i, 0 \le i < n$, where the summation is done according to an associative binary operation \circ

Algorithm RAM_PREFIX $(x_{0...n-1})$ returns $s_{0...n-1}$:

$$S_0 \leftarrow X_0$$

$$for i = 1 to n - 1 do:$$

$$S_i \leftarrow S_{i-1} \circ X_i$$

Algorithm PRAM_PREFIX $(x_{0...n-1})$ returns $s_{0...n-1}$:

() for
$$i = 0$$
 to $n - 1$ do in parallel:

$$\bigcirc \quad \mathbf{S}_i \leftarrow \mathbf{X}_i$$

2 for
$$j = 0$$
 to $\log n - 1$ do:

for
$$i = 2^j$$
 to $n - 1$ do in parallel

2
$$s_i \leftarrow s_{i-2^j} \circ s_i$$

- Sequential time: $t_1(n) = O(n)$ (also a lower bound); parallel time: $t_n(n) = O(\log n)$
- Cost: $c_n(n) = O(n \log n)$ (PRAM_Prefix is not optimal)

CS 467/567 (S. D. Bruda)

CS 467/567 (S. D. Bruda

AN OPTIMAL **PRAM** ALGORITHM FOR PREFIX COMPUTATIONS (CONT'D)

- $t(n) = O(\log n) + O(\log(n/\log n)) + O(\log n) = O(\log n)$ and so c(n) = O(n)
- The algorithm also illustrated how an *m*-processor PRAM can be made to run an algorithm designed to run on *n* processors, *n* > *m*
 - This "self-simulation" is extremely useful in practice
 - It shows how to solve a problem with less that the number of processors required theoretically
- A certain storage overhead is necessary for this algorithm as opposed to the previous
 - If optimality is not a concern (e.g., we have *n* processors anyway) then the original algorithm is preferable

AN OPTIMAL PRAM ALGORITHM FOR PREFIX COMPUTATIONS

- We exploit the associativity of \circ
- Let $k = \log n$ and m = n/k (rounded); we use an *m*-processor algorithm
- All the processors P_i , $0 \le i < m$ use in parallel RAM_PREFIX to compute he prefix sums s_{ik} , s_{ik+1} , ..., $s_{(i+1)(k-1)}$, where $s_{ik+j} = x_{ik} \circ x_{ik+1} \circ \cdots \circ x_{ik+j}$ • $O(k) = O(\log n)$ time
- Now PRAM_PREFIX is used on all the processors to compute the prefix sum of the sequence $\langle s_{k-1}, s_{2k-1}, \ldots, s_{n-1} \rangle$; the result is put back into $\langle s_{k-1}, s_{2k-1}, \ldots, s_{n-1} \rangle$
 - At the end of this step s_{ik-1} will be replaced with $s_{k-1} \circ s_{2k-1} \circ \cdots \circ s_{ik-1}$ • $O(\log m) = O(\log(n/\log n))$ time
- Fnally, all processors P_i , $1 \le i < m$ perform sequentially $s_{ik+i} \leftarrow s_{ik-1} \circ s_{ik+i}$ for all $0 \le j \le k-2$
 - Executed sequentially by all processors (except *P*₀)
 - $O(k) = O(\log n)$ time

D. Bruda)

Winter 2020 9 / 14

WHY PREFIX COMPUTATIONS?

- Sequentially the prefix computation performs a "sweep" of the input sequence; such a sweep can be accomplished in many other ways (some times more efficient!)
- A parallel algorithm however performs the "sweep" in an optimal amount of time using prefix computations!
- Case in point: maximum sum subsequence given a sequence of (not necessarily positive) integers ⟨x₀, x₁,..., x_{n-1}⟩ find two indices u and v such that x_u + ··· + x_v is maximal

Algorithm RAM_MAX_SUM ($x_{0...n-1}$) returns u, v:

- Maxseen $\leftarrow x_0$; $u \leftarrow 0$; $v \leftarrow 0$; Maxhere $\leftarrow x_0$; $q \leftarrow 0$
- for i = 0 to n do:
 - if Maxhere \ge 0 then Maxhere \leftarrow Maxhere + x_i
 - else Maxhere $\leftarrow x_i; q \leftarrow i$
 - (2) if Maxseen < Maxhere then $Maxseen \leftarrow Maxhere$; $u \leftarrow q$; $v \leftarrow i$
- One traversal of the sequence, linear complexity, also remember CS 327

Winter 2020

- A parallel algorithms solving the maximum sum subsequence cannot do this kind of traversal efficiently (the traversal is inherently sequential)
- We retort to prefix computations:

Input	Xi	-4	2	6	-1	-7	4	2	-1
Prefix sum	Si	-4	-2	4	3	-4	0	2	1
Modified prefix sum	m _i	4	4	4	3	2	2	2	1
with max as ∘	ai	2	2	2	3	6	6	6	7
$b_i \leftarrow m_i - s_i + x_i$	bi	4	8	6	-1	-1	6	2	-1

 $\mu = 1$

- $L \leftarrow \max_{0 \le i < m} b_i \implies L = 8$ (modified prefix sum, as above)
- *u* is the index at which *L* was found \Rightarrow

•
$$V \leftarrow a_u \quad \Rightarrow \quad V = 2$$

Optimal algorithm for n/log n processors

POLYNOMIAL INTERPOLATION

- Problem: Given n + 1 pairs of numbers (x_i, y_i) , $0 \le i \le n$ such that $x_0 < x_1 < \cdots < x_n$, find a polynomial h(x) such that $h(x_i) = y_i$, $0 \le i \le n$
- Newton's interpolation method:

$$\begin{array}{ll} h(x) &=& y_0 + Y_{01}(x-x_0) + Y_{02}(x-x_0)(x-x_1) \\ &+ \cdots + Y_{0n}(x-x_0)(x-x_1) \cdots (x-x_n) \end{array}$$

where
$$Y_{ii} = y_i$$
 and $Y_{i(i+j)} = \frac{Y_{i(i+j-1)} - Y_{(i+1)(i+j)}}{x_i - x_{i+j}}$

• Solving the recursion for Y_{0i} , $0 \le i \le n$ yields

$$Y_{0i} = \frac{y_0}{X_{01}X_{02}\cdots X_{0i}} + \frac{y_1}{X_{10}X_{12}\cdots X_{1i}} + \cdots + \frac{y_i}{X_{i0}X_{i1}\cdots X_{i(j-1)}}$$

where $X_{ij} = x_i - x_j$ for all $i \neq j$

- Denominators can be computed using prefix sum with the scalar multiplication operation
- One prefix computation computes all the denominators for numerator y_j

ARRAY PACKING

- Problem: Given an array *X* of size *n* with some values therein labeled, bring all the labeled values into contiguous positions
- Sequential algorithm (optimal O(n) time): Two pointers in the array q and r with initial values q = 1 and r = n
 - **(**) q advances to the right if X_q is labeled
 - I advances to the left if X_r is unlabeled
 - **(a)** X_q and X_r are switched whenever X_q is unlabeled and X_r is labeled

The labeled elements are all in adjacent positions in the first part of the array as soon as $q \ge r$

- Parallel algorithm:
 - Create a secondary array *S* of size *n* such that $S_i = 1$ if X_i is labeled and $s_i = 0$ otherwise
 - Ompute a prefix sum over S
 - **(a)** Move each labeled value X_i to index S_i

 $O(\log n)$ running time on $n/\log n$ processors (optimal)