CS 467/567: Divide and Conquer on the PRAM

Winter 2023

BINARY SEARCH

- Problem: Given a sequence $S_{1..n}$ sorted in increasing order and a value x, find the subscript k such that $S_i = x$
- If *n* processors are available the problem can be solved in constant time:
 - All processors read x
 - Each processor P_i compares x with S_i
 - All processors P_i (if any) that found x = S_i write j into k using min as combining operator
 - Good running time but far from optimal
 - Other CW models (Priority, Arbitrary, etc.) can also be used to break ties
- Naïve divide and conquer approach for *N* < *n* processors:
 - Divide the sequence S into N roughly equally sized subsequences (of length O(n/N) each)
 - Each processor performs a sequential binary search to search for x in one subsequence
 - Those procesors (if any) that found x write the respective index into k using min as combining operator
 - $O(\log(n/N))$ running time \rightarrow faster than the sequential algorithm but not considerably so

CS 467/567 (S. D. Bruda)

Winter 2023 1 / 1

PARALLEL BINARY SEARCH

- *N* processors used to perform an N + 1-way (rather than binary) search
- Sequence of stages; in the first stage all the sequence is under consideration, in subsequent stages only a subsequence will be under consideration
- At each stage the sequence under consideration is split into *N* + 1 subsequences
 - Each processor P_i compares x with the elements s at the right boundary of the *i*-th subsequence
 - If x < s then all the elements in the i + 1-st and higher subsequences can be discarded
 - If x > s then all the elements in the *i*-th and lower subsequences can be discarded
 - If x = s then the index has been found
- This process reduces the sequence under considertion *N* times rather than just halving it (like in the sequential case)
- The overall running time is thus $O(\log_N n)$

Merging

• Problem: Given two sequences of numbers (or more generally comparable values) $A = \langle a_1, a_2, ..., a_r \rangle$ and $B = \langle b_1, b_2, ..., b_s \rangle$ sorted in nondecreasing order, compute the sequence $C = \langle c_1, c_2, ..., c_{r+s} \rangle$ such that each c_i belongs to either A or B, ech a_i and b_i appear exactly once in C, and the sequence C is sorted in nondecreasing order

Algorithm RAM-MERGE(*A*, *B*) returns *C*:

- (a) $i \leftarrow 1, j \leftarrow 1$ (c) for k = 1 to r + s do (c) if $a_i < b_j$ then $c_k \leftarrow a_i, i \leftarrow i + 1$ (c) else $c_k \leftarrow b_j, j \leftarrow j + 1$
- O(n) running time (optimal)
- Requirements for the parallel algorithm:
 - Sublinear and adaptive number of processors
 - Running time substantially smaller than the sequential running time, and also adaptive
 - Optimal

PRAM MERGE

Assume (without loss of generality) that $r \leq s$

Algorithm PRAM-MERGE(*A*, *B*) returns *C*:

- Select N 1 elements from A that divide A into N sequences of approximately equal size; call this sequence $A' = \langle a'_1, a'_2, \ldots \rangle$. Similarly find the sequence $B' = \langle b'_1, b'_2, \ldots \rangle$ that divide B into N sequences of roughly the same size (constant time):
 - **(**) for i = 1 do in parallel $a'_i \leftarrow a_{i \lceil r/N \rceil}, b'_i \leftarrow b_{i \lceil s/N \rceil}$
- Merge A' and B' into a sequence of triples $V = \langle v_1, v_2, \dots, v_{2N-2} \rangle$, where each triple consists of an element of A' or B', its position in A' or B', and the name of the sequence of origin (A or B) ($O(\log N)$ time):
 - for i = 1 to N do in parallel
 - Processor P_i uses binary search on B' to find the smallest *j* such that $a'_i < b'_i$
 - **2** if *j* exists then $v_{i+j-1} \leftarrow (a'_i, i.A)$ else $v_{i+N-1} \leftarrow (a'_i, i, A)$
 - 2 for i = 1 to N do in parallel
 - Processor P_i uses binary search on A' to find the smallest j such that $b'_i < a'_i$
 - 2 if *j* exists then $v_{i+j-1} \leftarrow (b'_i, i.B)$ else $v_{i+N-1} \leftarrow (b'_i, i, A)$

PRAM MERGE (CONT'D)

- Each processor merges and inserts into *C* the elements of two subsequences, one from *A* and one from *B*. The indices of the two elements (one in *A* and one in *B*) at which each processor begins merging are first computed and stored in an array *Q* of pairs (O(r + s/N) time):
 - $\bigcirc Q_1 \leftarrow (1,1)$
 - 2 for i = 2 to N do in parallel
 - if v_{2i-2} = (a'_k, k, A) then processor P_i uses binary search on B to find the smallest j such that b_j > a'_k
 Q_i ← (k[r/N], j)
 - else processor P_i uses binary search on A to find the smallest j such that a_j > b'_k Q_i ← (j, k[s/N])

(a) for i = 1 to N do in parallel

- Processor P_i uses RAM-MERGE and $Q_i = (x, y)$ to merge two subsequences beginning at a_x and b_y and places the result in *C* beginning at index x + y 1. The merge continues until either (a) an element larger than or equal to the firt component of v_{2i} in each of *A* and $P_i(x_i) = (x_i) + (x_i) +$
 - B (when $i \leq N 1$), or
 - (b) no elements are left in either A or B (when i = N)

ENUMERATION SORTING ON THE CREW PRAM

Running time: $O(n/N + \log n) \rightarrow \text{optimal algorithm for } N \leq n/\log n$

Winter 2023 5 / 1

CS 467/567 (S. D. Bruda)

Winter 2023 4 / 11

LIGHTNING FAST PRAM SORTING

Algorithm CRCW-SORT($S_{1..n}$) returns $S'_{1..n}$:

- for i = 1 to n do in parallel
- for j = 1 to n do in parallel
 - $If s_i > s_j \lor s_i = s_j \land i > j$
 - **2** then P_{ij} writes 1 in c_i using + as combining operation
 - **Image : else** P_{ij} writes 0 in c_i using + as combining operation
- (a) for i = 1 to n do in parallel

• P_{i1} stores S_i into S'_{1+c_i}

- Method called enumeration or rank sorting
- Contant running time
- $O(n^2)$ processors $\rightarrow O(n^2)$ cost (not optimal)
- Likely of not a great practical value (number of processors very high)

- What about the CREW PRAM?
- Can still compare one pair of values (*s_i*, *s_j*) in each processor, but we cannot write all the results *c_i* in a single memory location
- Solution:

CS 467/567 (S. D. Bruda)

- If $s_i > s_j \lor s_i = s_j \land i > j$ then processor P_{ij} writes 1 into c_{ij} ; otherwise P_{ij} writes 0 into c_{ij}
- Set c_i to $\sum_{i=1}^{n} c_{ij}$ then continue as in the CRCW algorithm
- Extra step: $c_i \leftarrow \sum_{j=1}^n c_{ij}$
 - Keep adding (in parallel) pairs of values until a single value remains
 - $O(\log n)$ time using *n* processors
- Overall running time: $O(\log n)$ using $O(n^2)$ processors

)

Algorithm CREW-SORT($S_{1..n}$) returns $S_{1..n}$:

- Distribute equal size subsequences of S to the N processors. Each processor will then sort its subsequence sequentially (O((n/N) log(n/N)) time)
- Keep merging pairwise adjacent subsequences (in parallel) until one sequence (of length n) is obtained (using PRAM-MERGE)
 - *N*/*k* subsequences (of length *kn*/*N* each) to merge in iteration *k*
 - Allocate O(k) processor per pair of subsequences for each merge $\rightarrow O(n/N + \log(kn/N)) = O(n/N + \log n)$ time per iteration
 - $O(\log N)$ iterations $\rightarrow O((n/N) \log N + \log n \log N)$ overall time
- Running time: $O((n/N) \log n + \log^2 n)$
- Cost: $O(n \log n + N \log^2 n) \rightarrow \text{optimal for } N \leq n / \log n$
- We can also sort faster ($O(\log n)$ time with O(n) processors, still optimal), but such an algorithm does not scale well

CONVEX HULL ON THE PRAM

Algorithm PRAM-CONVEX-HULL(*n*, *Q*):

- Sort the points in *Q* according to their *x* coordinate
- Partition *Q* into $n^{1/2}$ sets $Q_1, Q_2, ..., Q_{n^{1/2}}$ of $n^{1/2}$ points each such that the sets are separated by vertical lines and Q_i is to the left of Q_j iff i < j
- **(a)** for i = 1 to $n^{1/2}$ do in parallel
 - if $|Q_i| < 3$ then $CH(Q_i) \leftarrow Q_i$
 - **2** else $CH(Q_i) \leftarrow \mathsf{PRAM}\text{-}\mathsf{CONVEX}\text{-}\mathsf{HULL}(n^{1/2}, Q_i)$
- return PRAM-MERGE-CH($CH(Q_1), CH(Q_2), \dots, CH(Q_{n^{1/2}})$)
- Let the algorithm use O(n) processors
- Step 1 doable in $O(\log n)$ time
- Step 2 takes constant time (the sets Q_i are all subsequences of Q)
- Step 4 takes $O(\log n)$ time
- Overall the running time is $t(n) = t(n^{1/2}) + c \log n$ and so $t(n) = O(\log n)$
- Therefore cost is $O(n \log n) \rightarrow \text{optimal}$ (non-output sensitive complexity)

(g)

CS 467/567 (S. D. Bruda

Winter 2023 8 / 11

CONVEX HULL ON THE PRAM (CONT'D)

Algorithm PRAM-MERGE-CH($CH(Q_1), CH(Q_2), \dots, CH(Q_{n^{1/2}})$):

- Let *u* be the leftmost point of *CH*(*Q*₁) and *v* the rightmost point of *CH*(*Q*_{*n*^{1/2}})
- Identify the upper hull:
 - Assign $O(n^{1/2})$ processors to each $CH(Q_i)$
 - 2 Each processor assigned to $CH(Q_i)$ finds the upper tangent common between $CH(Q_i)$ and $CH(Q_j)$ for some $i \neq j$
 - Setween all common tangents between $CH(Q_i)$ and $CH(Q_j)$, j < i let L_i (tangent with $CH(Q_i)$ at point I_i) be the tangent with the smallest slope
 - Setween all common tangents between $CH(Q_i)$ and $CH(Q_j)$, j > i let R_i (tangent with $CH(Q_i)$ at point r_i) be the tangent with the smallest slope
 - If the angle formed by L_i and R_i is smaller than 180 degrees then no points from $CH(Q_i)$ are in the upper hull; otherwise include in the upper hull all the points between I_i and r_i (inclusive)
 - Identify the upper hull as all the points from *u* to r_1 , then all the points identified above, then all the points from $r_{n^{1/2}}$ to *v* (inclusive)
- Identify the lower hull (similar to the upper hull)
 - The lower hullis identified as above but this time *u* and *v* are excluded
- Return the union of the upper and lower hulls (array packing)

CS 467/567 (S. D. Bruda)

Winter 2023 9 / 1

CONVEX HULL ON THE PRAM (CONT'D)

Computing the upper tangent of $CH(Q_i)$ and $CH(Q_j)$ in $O(\log n)$ time:

- Let *s* and *w* be the middle points in the (sorted) upper hulls from *CH*(*Q_i*) and *CH*(*Q_j*)
- If sw is the upper tangent of CH(Q_i) and CH(Q_j) then we are done (Case a)
- Otherwise repeat from Step 1 but excluding at least half the points of at least one upper hull (Cases b-h)

