BINARY SEARCH

CS 467/567: Divide and Conquer on the PRAM

Stefan D. Bruda

Winter 2023

- Problem: Given a sequence $S_{1 . . n}$ sorted in increasing order and a value x, find the subscript k such that $S_{i}=x$
- If n processors are available the problem can be solved in constant time:
- All processors read x
(2) Each processor P_{i} compares x with S_{i}
- All processors P_{i} (if any) that found $x=S_{i}$ write j into k using min as combining operator
- Good running time but far from optimal
- Other CW models (Priority, Arbitrary, etc.) can also be used to break ties
- Naïve divide and conquer approach for $N<n$ processors:
(1) Divide the sequence S into N roughly equally sized subsequences (of length $O(n / N)$ each
(2) Each processor performs a sequential binary search to search for x in one subsequence
(0) Those procesors (if any) that found x write the respective index into k using min as combining operator
- $O(\log (n / N))$ running time \rightarrow faster than the sequential algorithm but not considerably so
- Problem: Given two sequences of numbers (or more generally comparable values) $A=\left\langle a_{1}, a_{2}, \ldots, a_{r}\right\rangle$ and $B=\left\langle b_{1}, b_{2}, \ldots, b_{s}\right\rangle$ sorted in nondecreasing order, compute the sequence $C=\left\langle c_{1}, c_{2}, \ldots, c_{r+s}\right\rangle$ such that each c_{i} belongs to either A or B, ech a_{i} and b_{i} appear exactly once in C, and the sequence C is sorted in nondecreasing order

Algorithm RAM-merge (A, B) returns C :

(1) $i \leftarrow 1, j \leftarrow 1$
(2) for $k=1$ to $r+s$ do

0 if $a_{i}<b_{j}$ then $c_{k} \leftarrow a_{i}, i \leftarrow i+1$
(3) else $c_{k} \leftarrow b_{j}, j \leftarrow j+1$

- $O(n)$ running time (optimal)
- Requirements for the parallel algorithm:
- Sublinear and adaptive number of processors
- Running time substantially smaller than the sequential running time, and also adaptive
- Optimal

Assume (without loss of generality) that $r \leqslant s$

Algorithm PRAM-merge (A, B) returns C :

- Select $N-1$ elements from A that divide A into N sequences of approximately equal size; call this sequence $A^{\prime}=\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots\right\rangle$. Similarly find the sequence $B^{\prime}=\left\langle b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right\rangle$ that divide B into N sequences of roughly the same size (constant time):
(1) for $i=1$ do in parallel $a_{i}^{\prime} \leftarrow a_{i\lceil r / N]}, b_{i}^{\prime} \leftarrow b_{i\lceil s / M \mid}$
- Merge A^{\prime} and B^{\prime} into a sequence of triples $V=\left\langle v_{1}, v_{2}, \ldots v_{2 N-2}\right\rangle$, where each triple consists of an element of A^{\prime} or B^{\prime}, its position in A^{\prime} or B^{\prime}, and the name of the sequence of origin $(A$ or $B)(O(\log N)$ time $)$:
(1) for $i=1$ to N do in parallel
- Processor P_{i} uses binary search on B^{\prime} to find the smallest j such that $a_{i}^{\prime}<b_{j}^{\prime}$
(3) if j exists then $v_{i+j-1} \leftarrow\left(a_{i}^{\prime}, i . A\right)$ else $v_{i+N-1} \leftarrow\left(a_{i}^{\prime}, i, A\right)$
(2) fo
or $i=1$ to N do in parallel
- Processor P_{i} uses binary search on A^{\prime} to find the smallest j such that $b_{i}^{\prime}<a_{j}^{\prime}$
(3) if j exists then $v_{i+j-1} \leftarrow\left(b_{i}^{\prime}, i, B\right)$ else $v_{i+N-1} \leftarrow\left(b_{i}^{\prime}, i, A\right)$
- Each processor merges and inserts into C the elements of two subsequences, one from A and one from B. The indices of the two elements (one in A and one in B) at which each processor begins merging are first computed and stored in an array Q of pairs ($O(r+s / N$) time):
(e) $Q_{1} \leftarrow(1,1)$
(2) for $i=2$ to N do in parallel
(0) if $v_{2 i-2}=\left(a_{k}^{\prime}, k, A\right)$ then processor P_{i} uses binary search on B to find the smallest j such that $b_{j}>a_{k}^{\prime}$ $Q_{i} \leftarrow(k\lceil r / N\rceil, j)$
(3) else processor P_{i}
uses binary search on A to find the smallest j such that $a_{j}>b_{k}^{\prime}$ $Q_{i} \leftarrow(j, k\lceil s / N])$
(0) for $i=1$ to N do in parallel
- Processor P_{i} uses RAM-mERGE and $Q_{i}=(x, y)$ to merge two subsequences beginning at a_{x} and b_{y} and places the result in C beginning at index $x+y-1$. The merge continues until either
(a) an element larger than or equal to the firt component of $v_{2 i}$ in each of A and B (when $i \leqslant N-1$), or
(b) no elements are left in either A or B (when $i=N$)

Running time: $O(n / N+\log n) \rightarrow$ optimal algorithm for $N \leqslant n / \log n$

- What about the CREW PRAM?
- Can still compare one pair of values $\left(s_{i}, s_{j}\right)$ in each processor, but we cannot write all the results c_{i} in a single memory location
- Solution:
(1) If $s_{i}>s_{j} \vee s_{i}=s_{j} \wedge i>j$ then processor $P_{i j}$ writes 1 into $c_{i j}$; otherwise $P_{i j}$ writes 0 into $c_{i j}$
(2) Set c_{i} to $\sum_{j=1}^{n} c_{i j}$ then continue as in the CRCW algorithm
- Extra step: $c_{i} \leftarrow \sum_{j=1}^{n} c_{i j}$
- Keep adding (in parallel) pairs of values until a single value remains
- $O(\log n)$ time using n processors
- Overall running time: $O(\log n)$ using $O\left(n^{2}\right)$ processors

Algorithm CREW-SORT $\left(S_{1 . . n}\right)$ returns $S_{1 . . n}$:

(1) Distribute equal size subsequences of S to the N processors. Each processor will then sort its subsequence sequentially $(O((n / N) \log (n / N))$ time)
(2) Keep merging pairwise adjacent subsequences (in parallel) until one sequence (of length n) is obtained (using PRAM-mERGE)

- N / k subsequences (of length $k n / N$ each) to merge in iteration k
- Allocate $O(k)$ processor per pair of subsequences for each merge \rightarrow $O(n / N+\log (k n / N))=O(n / N+\log n)$ time per iteration
- $O(\log N)$ iterations $\rightarrow O((n / N) \log N+\log n \log N)$ overall time
- Running time: $O\left((n / N) \log n+\log ^{2} n\right)$
- Cost: $O\left(n \log n+N \log ^{2} n\right) \rightarrow$ optimal for $N \leqslant n / \log n$
- We can also sort faster $(O(\log n)$ time with $O(n)$ processors, still optimal), but such an algorithm does not scale well

Convex Hull on the PRAM (CONT'd)

Algorithm PRAM-merge- $\mathrm{CH}\left(\mathrm{CH}\left(Q_{1}\right), \mathrm{CH}\left(Q_{2}\right), \ldots, \mathrm{CH}\left(Q_{n^{1 / 2}}\right)\right)$:

- Let u be the leftmost point of $\mathrm{CH}\left(Q_{1}\right)$ and v the rightmost point of $C H\left(Q_{n^{1 / 2}}\right)$
- Identify the upper hull:
- Assign $O\left(n^{1 / 2}\right)$ processors to each $\mathrm{CH}\left(Q_{i}\right)$
(2) Each processor assigned to $\mathrm{CH}\left(Q_{i}\right)$ finds the upper tangent common between $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right)$ for some $i \neq j$
(0) Between all common tangents between $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right), j<i$ let L_{i} (tangent with $C H\left(Q_{i}\right)$ at point l_{i}) be the tangent with the smallest slope
- Between all common tangents between $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right), j>i$ let R_{i} (tangent with $C H\left(Q_{i}\right)$ at point r_{i}) be the tangent with the smallest slope
(3) If the angle formed by L_{i} and R_{i} is smaller than 180 degrees then no points from $\mathrm{CH}\left(Q_{i}\right)$ are in the upper hull; otherwise include in the upper hull all the points between l_{i} and r_{i} (inclusive)
- Identify the upper hull as all the points from u to r_{1}, then all the points identified above, then all the points from $r_{n^{1 / 2}}$ to v (inclusive)
- Identify the lower hull (similar to the upper hull)
- The lower hullis identified as above but this time u and v are excluded
- Return the union of the upper and lower hulls (array packing)

Algorithm PRAM-CONVEX-HULL(n, Q):
(1) Sort the points in Q according to their x coordinate
(2) Partition Q into $n^{1 / 2}$ sets $Q_{1}, Q_{2}, \ldots, Q_{n^{1 / 2}}$ of $n^{1 / 2}$ points each such that the sets are separated by vertical lines and Q_{i} is to the left of Q_{j} iff $i<j$
(0) for $i=1$ to $n^{1 / 2}$ do in parallel
(0) if $\left|Q_{i}\right|<3$ then $\mathrm{CH}\left(Q_{i}\right) \leftarrow Q_{i}$
(3) else $C H\left(Q_{i}\right) \leftarrow \operatorname{PRAM}-\operatorname{convEx}-H U L L\left(n^{1 / 2}, Q_{i}\right)$
(0) return PRAM-merge-CH $\left(\mathrm{CH}\left(Q_{1}\right), \mathrm{CH}\left(Q_{2}\right), \ldots, \mathrm{CH}\left(Q_{n^{1 / 2}}\right)\right)$

- Let the algorithm use $O(n)$ processors
- Step 1 doable in $O(\log n)$ time
- Step 2 takes constant time (the sets Q_{i} are all subsequences of Q)
- Step 4 takes $O(\log n)$ time
- Overall the running time is $t(n)=t\left(n^{1 / 2}\right)+c \log n$ and so $t(n)=O(\log n)$
- Therefore cost is $O(n \log n) \rightarrow$ optimal (non-output sensitive complexity)

Convex Hull on the PRAM (cont'd)

Computing the upper tangent of $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right)$ in $O(\log n)$ time:

- Let s and w be the middle points in the (sorted) upper hulls from $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right)$

(d)
- If $\overline{s w}$ is the upper tangent of $\mathrm{CH}\left(Q_{i}\right)$ and $\mathrm{CH}\left(Q_{j}\right)$ then we are done (Case a)
- Otherwise repeat from Step 1 but excluding at least half the points of at least one upper hull (Cases b-h)

(e)

(f)

(g)

(h)

