CS 467/567: The Parallel Computation Thesis

Stefan D. Bruda

Winter 2023

THE GRAPH ACCESSIBILITY PROBLEM (GAP)

@ GAP: Given a directed graph G = (V, E) and two vertices u,v e V,
determine whether there exists a path from u to v

@ GAP e NL:
Algorithm N-GAP(G = (V,E),u,v) returns T/L:

o X <—U
@ while x = vdo

@ nondeterministically guess a value y € V
Q if (x,y) ¢ E then return L
Q x—vy
Q return T
@ GAP e DSPACE(log? n):

Algorithm D-GAP(G = (V,E),u,v) returns T/L:
return PATH(G, u, v, | V)
Algorithm PATH(G = (V, E),i,j, k) returns T/L:
@ if k = 0 then return / = j else if k = 1 then return (i, j) € E
@ elsereturn 3/ e V : PATH(i, I, [k/2]) ~ PATH(I,}, [k/2])

@ O(log n) recursion depth and O(log n) storage per level = O(log? n) space
@ GAP can be solved in parallel in O(log? n) time (see hypercube algorithm)

CS 467/567 (S. D. Bruda) Winter 2023 2/7

SPACE-BOUNDED COMPUTATIONS

@ A Turing machine M is s(n)-space bounded, s : N — N if

e M is a Turing machine with a read-only input tape, a write-only output tape,
and a (read-write) work tape

o The output tape is initially empty and each time the machine writes on that
tape it writes a symbol into the square immediately adjacent to the right of
the last overwritten tape square

@ A configuration of M is a tuple {(q, w, uav, o)} where q is the current state,
w is the (read only) input, uav is the content of the work tape, and « is the
output produced so far.

o There is no configuration (q, w, uav, «) such that
(8,W,e,¢) Hiy (g, w, uav, o) and [uav| > s(|w]).

@ DSPACE(s(n)) / NSPACE(s(n)) — the class of all the decision problems
solved by s(n)-space bounded, deterministic/nondeterministic Turing
machines

@ Shorthand: L = DSPACE(log n), NL = NSPACE(log n),
POLYLOGSPACE = |, DSPACE(log" n) = DSPACE(log°") n)

o Note in passing: DSPACE(s(n)) = DSPACE(s(n)/c) forallce N

@ L = NL < P; widely believed (but not proven) that all the inclusions are
strict

CS 467/567 (S. D. Bruda) Winter 2023 1/7

DETERMINISTIC VS NONDETERMINISTIC SPACE

Theorem (Savitch’s theorem)

NSPACE(s(n)) < DSPACE(s(n)?) for most useful functions s(n) = Q(log n)
including polynomials and poly-logarithms (space-constructible functions)

@ Let M be an s(n)-space bounded Turing machine
@ Size of configuration graph: 2°6(") vertices

@ Use GAP to determine whether the accepting configuration is accessible
from the initial configuration — (log 2°0(5("))2 = O(s(n)?) space

@ NL = DSPACE(O(log? n))
@ NSPACE(log®") n) = DSPACE(log®") n) (= POLYLOGSPACE)
@ DSPACE(n®M) = NSPACE(n°") (= PSPACE)

@ Known that P # POLYLOGSPACE; conjectured that
P ¢ POLYLOGSPACE and POLYLOGSPACE & P

CS 467/567 (S. D. Bruda) Winter 2023 3/7



LOG-SPACE COMPLETENESS

@ Alanguage Ais log-space reducible to language B (A <. B) iff there
exists a function = computable in logarithmic space such that x € A iff
T7(x) e B

@ Let C be a class of languages

e Bislog-space hard for Cif A <,; BforallAe C
@ Bis log-space complete for C if B is log-space hard for Cand Be C
o P-complete stands for “log-space complete for P”

@ How can we conclude that if a problem is P-complete and also in
POLYLOGSPACE then P < POLYLOGSPACE?

o Naive approach: given input x for some problem A e P, use the log-space
machine M. that computes the log-space reduction from A to a P-complete
problem B, then run the machine Mg (that accepts B) on M- (x)

o This approach fails (not enough space to store M, (x))

o However, we can modify the Turing machine M. to obtain M. such that
M. (x, i) = the i-th bit of M, (x)

o Every transitions of Mg depends on a single input bit

o So instead of computing all the input M, (x) in advance, we use M. on
demand to obtain the particular bit needed by the current transition of Mg

CS 467/567 (S. D. Bruda) Winter 2023 4/7

THE PARALLEL COMPUTATION THESIS (CONT’D)

THE PARALLEL COMPUTATION THESIS

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space
used by a sequential machine

@ Technically a conjecture rather than theorem because of the presence of

“reasonable”

o A “reasonable” parallel machine usually features restrictions on word size,
instruction set, and parallelism
@ Powerful theoretical tool

P < POLYLOGSPACE

All P-complete problems are inherently sequential unless

@ ltis likely that no P-complete problem is in POLYLOGSPACE

@ Therefore according to the parallel computation thesis they cannot be

solved in parallel in O(log®") n) time

@ The only possibility remaining is that they can be solved in parallel in
polynomial time — no better than solving them sequentially

CS 467/567 (S. D. Bruda)

“REASONABLE” PARALLEL MODELS

Winter 2023

5/7

An s(n) space-bounded deterministic Turing machine can be simulated by a
parallel machine with the minimal instruction set, of word size O(s(n)), and in
time O(s(n) log s(n))

A t(n) time bounded parallel machine with word size w(n) can be simulated
by a deterministic Turing machine using space t(n)(w(n) + log t(n)) + s(n),

where s(n) is the space requires for the Turing machine to simulate a single
instruction of a processor of the parallel machine

CS 467/567 (S. D. Bruda) Winter 2023 6/7

@ Restrictions on the instruction set:

e One-time unit cost instructions should be computable in O(t(n)°")) space

by a deterministic Turing machine, where t(n) is the running time of the

parallel machine

@ One-time unit cost instructions should be computable in O(t(n)°™") time by

a deterministic Turing machine (stronger than the above)
@ Restrictions on the number of processors:

o Most people regard a parallel machine as feasible if the number of
processors is n°") (small machine) and the running time is log®") n (fast

machine)

o However, the parallel computation thesis holds even if the number of

processors is 2°U(M) or gven 20U(M
@ Restrictions on the word size

yo)

o Normally the word size is t(n)°") though in practice the tighter restriction of

O(log n) size is used for simplicity

CS 467/567 (S. D. Bruda)

Winter 2023

717



