CS 467/567: The Parallel Computation Thesis

Stefan D. Bruda
Winter 2023

THE GRAPH ACCESSIBILITY PROBLEM (GAP)

GAP: Given a directed graph $G = (V, E)$ and two vertices $u, v \in V$, determine whether there exists a path from u to v

- GAP \in NL:
 - Algorithm N-GAP($G = (V, E), u, v$) returns \top/\bot:
 1. $x \leftarrow u$
 2. while $x \neq v$ do
 1. nondeterministically guess a value $y \in V$
 2. if $(x, y) \notin E$ then return \bot
 3. $x \leftarrow y$
 4. return \top

- GAP \in DSPACE($\log^2 n$):
 - Algorithm D-GAP($G = (V, E), u, v$) returns \top/\bot:
 1. return PATH($G, u, v, |V|$)
 - Algorithm PATH($G = (V, E), i, j, k$) returns \top/\bot:
 1. if $k = 0$ then return $i = j$
 2. else if $k = 1$ then return $(i, j) \in E$
 3. else return $\exists l \in V$: PATH($l, i, \lfloor k/2 \rfloor$) \land PATH($l, j, \lfloor k/2 \rfloor$)

- $O(\log n)$ recursion depth and $O(\log n)$ storage per level $= O(\log^2 n)$ space
- GAP can be solved in parallel in $O(\log^2 n)$ time (see hypercube algorithm)

DETERMINISTIC VS NONDETERMINISTIC SPACE

Theorem (Savitch’s theorem)

$\text{NSPACE}(s(n)) \subseteq \text{DSPACE}(s(n)^2)$ for most useful functions $s(n) = \Omega(\log n)$ including polynomials and poly-logarithms ($\text{space-constructible functions}$)

- Let M be an $s(n)$-space bounded Turing machine
- Size of configuration graph: $2^{O(s(n))}$ vertices
- Use GAP to determine whether the accepting configuration is accessible from the initial configuration $\rightarrow (\log 2^{O(s(n))})^2 = O(s(n)^2)$ space

Corollary

- $\text{NL} \subseteq \text{DSPACE}(O(\log^2 n))$
- $\text{NSPACE}(\log^{O(1)} n) = \text{DSPACE}(\log^{O(1)} n) (= \text{POLYLOGSPACE})$
- $\text{DSPACE}(n^{O(1)}) = \text{NSPACE}(n^{O(1)}) (= \text{PSPACE})$

Known that $\mathcal{P} \neq \text{POLYLOGSPACE}$; conjectured that $\mathcal{P} \neq \text{POLYLOGSPACE}$ and $\text{POLYLOGSPACE} \neq \mathcal{P}$

SPACE-BOUNDED COMPUTATIONS

- A Turing machine M is $s(n)$-space bounded, $s : \mathbb{N} \to \mathbb{N}$ if
 1. M is a Turing machine with a read-only input tape, a write-only output tape, and a (read-write) work tape
 2. The output tape is initially empty and each time the machine writes on that tape it writes a symbol into the square immediately adjacent to the right of the last overwritten tape square
 3. A configuration of M is a tuple $((q, w, ugv, \alpha))$ where q is the current state, w is the (read only) input, ugv is the content of the work tape, and α is the output produced so far.
 4. There is no configuration $((q, w, ugv, \alpha))$ such that $(s, w, \varepsilon, \varepsilon) \leftarrow_M^* ((q, w, ugv, \alpha))$ and $|ugv| > s(|w|)$.
- $\text{DSPACE}(s(n)) / \text{NSPACE}(s(n))$ \rightarrow the class of all the decision problems solved by $s(n)$-space bounded, deterministic/non-deterministic Turing machines
- Shorthand: $L = \text{DSPACE}(\log n)$, $\text{NL} = \text{NSPACE}(\log n)$, $\text{POLYLOGSPACE} = \bigcup_{k \geq 1} \text{DSPACE}(\log^k n) = \text{DSPACE}(\log^{O(1)} n)$
- Note in passing: $\text{DSPACE}(s(n)) = \text{DSPACE}(s(n)/c)$ for all $c \in \mathbb{N}$
- $\text{L} \subseteq \text{NL} \subseteq \text{P}$; widely believed (but not proven) that all the inclusions are strict
LOG-SPACE COMPLETENESS

- A language A is log-space reducible to language B ($A \leq_{\log} B$) iff there exists a function τ computable in logarithmic space such that $x \in A$ iff $\tau(x) \in B$
- Let C be a class of languages
 - B is log-space hard for C if $A \leq_{\log} B$ for all $A \in C$
 - B is log-space complete for C if B is log-space hard for C and $B \in C$
 - \mathcal{P}-complete stands for "log-space complete for \mathcal{P}"

How can we conclude that if a problem is \mathcal{P}-complete and also in POLYLOGSPACE then $\mathcal{P} \subseteq \text{POLYLOGSPACE}$?

Naïve approach: given input x for some problem $A \in \mathcal{P}$, use the log-space machine M_{\log} that computes the log-space reduction from A to a \mathcal{P}-complete problem B, then run the machine M_{\log} (that accepts B) on $M_{\log}(x)$

This approach fails (not enough space to store $M_{\log}(x)$)

However, we can modify the Turing machine M_{\log} to obtain M'_r such that $M'_r(x, i)$ is the i-th bit of $M_{\log}(x)$

Every transition of M_{\log} depends on a single input bit

So instead of computing all the input $M_{\log}(x)$ in advance, we use M'_r on demand to obtain the particular bit needed by the current transition of M_{\log}

THE PARALLEL COMPUTATION THESIS

Theorem (The parallel computation thesis)

Time on any reasonable parallel model is polynomially equivalent to the space used by a sequential machine

- Technically a conjecture rather than theorem because of the presence of "reasonable"
 - A "reasonable" parallel machine usually features restrictions on word size, instruction set, and parallelism
 - Powerful theoretical tool

Corollary

All \mathcal{P}-complete problems are inherently sequential unless $\mathcal{P} \subseteq \text{POLYLOGSPACE}$

- It is likely that no \mathcal{P}-complete problem is in POLYLOGSPACE
- Therefore according to the parallel computation thesis they cannot be solved in parallel in $O(\log^{O(1)} n)$ time
- The only possibility remaining is that they can be solved in parallel in polynomial time \rightarrow no better than solving them sequentially

"REASONABLE" PARALLEL MODELS

Theorem

An $s(n)$ space-bounded deterministic Turing machine can be simulated by a parallel machine with the minimal instruction set, of word size $O(s(n))$, and in time $O(s(n) \log s(n))$

Theorem

A $t(n)$ time bounded parallel machine with word size $w(n)$ can be simulated by a deterministic Turing machine using space $t(n)(w(n) + \log t(n)) + s(n)$, where $s(n)$ is the space required for the Turing machine to simulate a single instruction of a processor of the parallel machine

Restrictions on the instruction set:
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ space by a deterministic Turing machine, where $t(n)$ is the running time of the parallel machine
- One-time unit cost instructions should be computable in $O(t(n)^{O(1)})$ time by a deterministic Turing machine (stronger than the above)

Restrictions on the number of processors:
- Most people regard a parallel machine as feasible if the number of processors is $n^{O(1)}$ (small machine) and the running time is $\log^{O(1)} n$ (fast machine)
- However, the parallel computation thesis holds even if the number of processors is $2^{O(t(n)^{O(1)})}$ or even $2^{O(t(n)^{O(1)})}$

Restrictions on the word size
- Normally the word size is $t(n)^{O(1)}$ though in practice the tighter restriction of $O(\log n)$ size is used for simplicity