
CS 515: Concurrent and Real-Time Systems

Stefan D. Bruda

Fall 2019

CS 515: CONCURRENT AND REAL-TIME SYSTEMS

Coordinates:
Course Web page: http://cs.ubishops.ca/home/cs515 (also accessible
following the obvious link from http://bruda.ca)
Instructor: Stefan Bruda
(http://bruda.ca, stefan@bruda.ca, Johnson 114B, ext. 2374)
Office hours?

Textbook: Steve Scheider, Concurrent and Real-time Systems: The CSP
Approach (Wiley 1999)

Electronic version available on-line, but be aware that pages and exercise
numbers do not always match

Introduction in formal methods
Specification using a progess algebra
Operational semantics (transition systems)
System verification (traces, failures, divergence)
Model-based testing
Specification using temporal logic
Basis of model checking
Timed specification and verification (if time permits)

CS 403: Introduction (S. D. Bruda) Fall 2019 1 / 10

THE VERIFICATION OF COMPUTING SYSTEMS

The historically mainstream method of program verification: throw tests at
the program and hope for the best

Informal determination of what tests are meaningful
Can detect defects, but certainly cannot guarantee any degree of
correctness
Still used nowadays, especially for application software
Extreme variant: let the user come up with and apply the tests (beta
versions)

Alternate method: deductively prove the program correct
Program correctness is treated as a theorem
Proof done by hand
Guarantees correctness, takes lots of time, needs experts

Best method: formal methods
Test a system against a formal (mathematical) specification
Some effort to create the specification but the testing is fully automated
Guarantees correctness

CS 403: Introduction (S. D. Bruda) Fall 2019 2 / 10

A CASE AGAINST EMPIRICAL TESTING

Three Mile Island Nuclear Generating Station, Unit 2, 28 March 1979
Cooling pump failure causes increased pressure
Relief valve opened automatically; indicator light turns on in the control
room
Pressure drops, command to close the relief valve given automatically;
indicator light turns off
Problem: indicator light signals that current has been applied to the
actuator, not that the valve is physically closed
Mechanical problem prevents the valve to close; nobody knows!
Faulty message by the indicator light confuses the operator, who fails to
recognize the loss of coolant event
Core meltdown, one of the top 5 nuclear incidents ever recorded
No formal verification of the system

CS 403: Introduction (S. D. Bruda) Fall 2019 3 / 10

ANOTHER CASE AGAINST EMPIRICAL TESTING

The Pentium Microprocessor (successor of 80486), late 1994
Unlike previous Intel CPUs the Pentium chips includes a floating-point
unit (FPU)
Speeds up computations with floating-point numbers
All the Pentium chips built until late 1994 had errors in the on-chip FPU
instructions for division
Pentium’s FPU incorrectly divides certain floating-point numbers

4195835/3145727 is 1.33382 according to math and 1.33374 according to
said Pentium

Widely publicized mistake, huge embarrassment for Intel
Joke of the day:
Q: Why did they call their new processor Pentium instead of 80586?
A: Because they used the new processor to add 100 to 80486 and the
result was 80585.999998
Faulty design, never formally verified
Causes Intel to introduce formal verification for all of its chips

CS 403: Introduction (S. D. Bruda) Fall 2019 4 / 10

A CASE FOR PROGRAM PROOFS

The Space Shuttle, 1981–2011
135 missions; second-longest-serving manned space vehicle
Very thorough protocol for software changes
Changing one line of code requires an average of 10 pages of
documentation
Well-defined chain of responsibility
All changes require extensive testing
All changes must have a solid justification and are considered a priori
suspicious (“what is not there cannot go wrong”)
All but the most trivial changes required formal proofs or correctness
No software defect was ever found!
Widely regarded as the most robust piece of software ever developped
Price paid: Very slow development, huge development effort

CS 403: Introduction (S. D. Bruda) Fall 2019 5 / 10

ALGEBRAIC SPECIFICATION AND VERIFICATION

A process algebra is like a programming language, but for describing the
behaviour of a system rather than the system itself

Similar in spirit with a functional programming language
Like any programming language it has a syntax and a semantics
Semantics can be expressed in multiple ways
Structural operational semantics (SOS), best suited for describing the
language but also supports verification
Operational semantics; best suited for automated verification: a process
algebraic description “compiles” into a transition system

Verification is based on the behaviour of a system S expressing the
desired behaviour (specification) and a system under test I

The correctness of the system under test established based on an
implementation relation (preorder): I v S or “I implements S”
This preorder induces an equivalence relation between processes: I ≡ S iff
I v S ∧ S v I
Several implementation relations can be defined, depending on what is
deemed observable about processes
Some times convenient to define implementation relations based on
intermediate processes (tests)
Algebraic formal methods in a nutshell: the study of various implementation
relations

CS 403: Introduction (S. D. Bruda) Fall 2019 6 / 10

LOGICAL SPECIFICATION AND VERIFICATION

Logical system specification is done using a formal logic
The good ol’ Boolean logic is insufficient, so it is augmented with constructs
that allow the specification of sequences of properties

Examples include “P will eventually be true”, “P is always true”, “P must remain
true until Q becomes true”

The resulting formalism is called temporal logic
Temporal logic can be used to specify the properties of individual runs of a
system under test (linear time)
Other kinds of temporal logic can be used to specify the properties of all the
possible runs at once (branching time)
Both linear and branching time have advantages and disadvantages

Verification is based on a logical formula (specification) and a model of
the behaviour of the system under test

Transition systems can be used to specify the latter, but to make things more
interesting the traditional model is actually different (Kprike structures)
The system under test is verified against the specification using a model
checking algorithm

CS 403: Introduction (S. D. Bruda) Fall 2019 7 / 10

SPECIFICATION AND VERIFICATION OF REAL-TIME

SYSTEMS

All the models enumerated earlier (process algebrae, temporal logic,
transition systems, etc.) can be augmented to incorporate data on real
time (as measures by a clock)

Real time can be dense (real values) or discrete
Real time introduces several extra issues, so considering it is not trivial
(especially true for dense time)

All the verification techniques mentioned earlier can then be augmented
to account for real time information

We thus obtain timed preorders, timed testing, timed model checking, etc.
Note in passing: when talking about real time engineering types prefer the
adjective “real-time” while math people prefer the adjective “timed”; they both
refer to the same thing!

Real time not expected to be covered in the course extensively (we will
likely run out of... real time), but I hope to be able to provide a however
short introduction

CS 403: Introduction (S. D. Bruda) Fall 2019 8 / 10

A CASE OF MISTAKEN FORMAL VERIFICATION

Ariane 5 Flight 501, 4 June 1996
Brand new, heavier rocket; navigation software taken directly from Ariane
4

Software formally verified in the Ariane 4 setting
Flight path considerably different
No new verification for the changed specification

Inertial parameters considerably higher for Ariane 5 (heavier), exceed the
storage capacity of the program (arithmetic overflow)
Main computer detects exception, shuts down
Back-up computer fires up, detects the same exception, shuts down
Flight path in shambles 37 seconds after launch, self-destruct activates
Down goes rocket and satellite for a grand total of $370,000,000 in losses
Oh the irony: Arithmetic overflow can be handled in software; no such
handler existed for this particular variable, because “overflow cannot
happen here”
Oh the irony, take 2: The subsystem that causes the fault was important
for navigation in Ariane 4 but was not even actively used in Ariane 5!

CS 403: Introduction (S. D. Bruda) Fall 2019 9 / 10

FORMAL VERIFICATION MATTERS

CS 403: Introduction (S. D. Bruda) Fall 2019 10 / 10

