CS 455/555: Mathematical preliminaries

Stefan D. Bruda

Fall 2020

SETS AND RELATIONS

- Sets:
 - Operations: intersection, union, difference, Cartesian product
 - Big ∪, powerset (2^A)
 - Partition $(\pi \subseteq 2^A, \emptyset \notin \pi, \forall i \neq j : \pi_i \cap \pi_j = \emptyset, \bigcup_{\pi_i \in \pi} \pi_i = A)$
 - Equality
 - De Morgan rules

SETS AND RELATIONS

- Sets:
 - Operations: intersection, union, difference, Cartesian product
 - Big (J, powerset (2^A)
 - Partition ($\pi \subseteq 2^A$, $\emptyset \notin \pi$, $\forall i \neq j : \pi_i \cap \pi_j = \emptyset$, $\bigcup_{\pi_i \in \pi} \pi_i = A$)
 - Equality
 - De Morgan rules
- Relations:
 - An *n*-ary relation over a set $A: R \subseteq A^n$
 - Binary relations $R \subseteq A \times A \Rightarrow$ graph representation
 - oreflexive: $\forall a \in A : (a, a) \in R$
 - symmetric: $\forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \in R$
 - antisymmetric: $\forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \notin R$
 - 1 transitive: $\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$
 - 1+4: preorder
 - 1+4+2: equivalence \Rightarrow partition in equivalence classes $[a] = \{b : (a, b) \in R\}$
 - 1+4+3: partial order (then total order)

FUNCTIONS AND CARDINALITY

- Functions: $f: A \rightarrow B$; special relations; one-to-one, onto, bijection
 - Natural isomorphism = "natural" bijection (e.g. between $A \times B \times C$ and $A \times (B \times C)$, between A and $\{\{a\} : a \in A\}$)

CS 455/555 (S. D. Bruda) Fall 2020 2 / 7

FUNCTIONS AND CARDINALITY

- Functions: $f: A \rightarrow B$; special relations; one-to-one, onto, bijection
 - Natural isomorphism = "natural" bijection (e.g. between $A \times B \times C$ and $A \times (B \times C)$, between A and $\{\{a\} : a \in A\}$)
- Cardinality: Binary relation (equivalence!) \mathcal{E} over the set of all sets
 - $(A,B) \in \mathcal{E}$ also denoted by $|A| = |B| \Rightarrow A$ and B are equinumerous = there exists a bijection $e: A \to B$
 - Interesting kind of sets
 - finite: $(A, \{1, 2, ..., n\}) \in \mathcal{E}$ for some $n \in \mathbb{N}$; also written |A| = n
 - (infinitely) countable: $|A| = |\mathbb{N}|$ (count the elements)
 - uncountable
 - Is N × N countable?

CS 455/555 (S. D. Bruda) Fall 2020 2 / 7

PROOF TECHNIQUES

- Induction: If
 - $0 \in A$, and

then $A = \mathbb{N}$

PROOF TECHNIQUES

- Induction: If
 - \bigcirc 0 \in A, and

then $A = \mathbb{N}$

- Pigeonhole principle: If |A| > |B| then there is no one-to-one function $f: A \to B$
 - Useful example: If there is a path between vertices a and b of a graph with n vertices then there is a path between a and b of length at most n

CS 455/555 (S. D. Bruda) Fall 2020 3 / 7

PROOF TECHNIQUES

- Induction: If
 - \bigcirc 0 \in A, and

then $A = \mathbb{N}$

- Pigeonhole principle: If |A| > |B| then there is no one-to-one function $f: A \rightarrow B$
 - Useful example: If there is a path between vertices a and b of a graph with n vertices then there is a path between a and b of length at most n
- Diagonalization: Given some relation $R \subseteq A \times A$, let

$$R_a = \{b : b \in A \land (a,b) \in R\}$$
 $D = \{a : a \in A \land (a,a) \notin R\}$

Then $D \neq R_a$ for any $a \in A$

- Useful in proofs by contradiction
- Interesting examples: $2^{\mathbb{N}}$ is uncountable; [0, 1] is uncountable

CLOSURES

- $R \subseteq D^{n+1}$ for some n > 0. $B \subseteq D$
- B is closed under R if $b_{n+1} \in B$ whenever $b_1, b_2, \ldots, b_n \in B$ and $(b_1, b_2, \ldots, b_n, b_{n+1}) \in R$
- Closure property: "B is closed under R₁, R₂, ..., R_n"
- Let \mathcal{P} be a closure property (under R_1, R_2, \ldots, R_n) and $A \subseteq D$. Then there exists a minimal B such that $A \subseteq B$ and \mathcal{P} holds for B
 - B is the closure of A under R_1, R_2, \ldots, R_n
 - Useful example: The reflexive and transitive closure of R is the closure of R under reflexivity and transitivity

CS 455/555 (S. D. Bruda) Fall 2020

ALPHABETS AND STRINGS

- The math of strings of symbols (such as strings of bits)
- Alphabet Σ: a finite set of symbols
- Strings (not sets!) over an alphabet
- The set of all strings over Σ: Σ*
- Empty string: ε (also λ , in the text e)
- Operations: length (|w|), concatenation (⋅ or juxtaposition), substring, suffix, prefix
- Length over a set $A: |w|_A$ is the length of the string w from which all the symbols not in A have been erased
 - Abuse of notation: $|w|_a$ is a shorthand for $|w|_{\{a\}}$
- Exponentiation: $w^0 = \varepsilon$; $w^{i+1} = w^i w$
- Reversal: $w = \varepsilon \Rightarrow w^{\mathbb{R}} = \varepsilon$; for $a \in \Sigma$: $w = ua \Rightarrow w^{\mathbb{R}} = au^{\mathbb{R}}$

LANGUAGES

- Language: set of strings
- Can be finite, infinite, countable, etc
- Σ* is a language (countable?)
- Operations: union, intersection, difference, complement $(\overline{A} = \Sigma^* \setminus A)$
- Concatenation: $L_1L_2 = \{w_1w_2 : w_1 \in L_1 \land w_2 \in L_2\}$
- Kleene star (or closure—under what?):

$$L^* = \{ w_1 w_2 \cdots w_n : n \ge 0 \land \forall 1 \le i \le n : w_i \in L \}$$

- Are there languages that cannot be represented?
- We generally work with mathematical descriptions
- Generators are useful for describing languages
- Generally once the language is described we find convenient to work with a regognition device (is it the case that $w \in L$?) instead

REGULAR EXPRESSIONS AND REGULAR LANGUAGES

- We start with very simple languages and then we combine them using a set of usual set operations
 - The set of regular languages is then the closure of $\{a\}: a \in \Sigma\} \cup \{\emptyset\}$ under concatenation, union, and Kleene star
- Simpler to work with an inductive definition: Regular expressions and their associated languages are defined as follows
 - \emptyset is a regular expression; $\mathcal{L}(\emptyset) = \emptyset$
 - a is a regular expression for all $a \in \Sigma$; $\mathcal{L}(a) = \{a\}$
 - If α and β are regular expressions then so are $\alpha\beta$, $\alpha\cup\beta$, and α^* ; $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$ $\mathcal{L}(\alpha\cup\beta) = \mathcal{L}(\alpha)\cup\mathcal{L}(\beta)$ $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$
 - Nothing else is a regular expression
- Regular expressions are language generators
- The set REG of regular languages contain exactly all the languages generated by regular expressions

CS 455/555 (S. D. Bruda) Fall 2020 7 / 7