CS 455/555: Mathematical preliminaries

Stefan D. Bruda

Fall 2020



SETS AND RELATIONS

@ Sets:

Operations: intersection, union, difference, Cartesian product
Big |, powerset (24)

Partition (1 C 2%, 0 & 7, Vi #j : m Nw = 0, Uﬂ',‘Eﬂ' mi = A)
Equality

De Morgan rules

CS 455/555 (S. D. Bruda) Fall 2020 1/7



SETS AND RELATIONS

@ Sets:

o Operations: intersection, union, difference, Cartesian product
e Big |J, powerset (2)
e Partition (7 C 24 0 gmnVi£j:mnm =10, L_Jm€7r wi = A)
o Equality
e De Morgan rules
@ Relations:
o An n-ary relation over aset A: RC A”
@ Binary relations R C A x A = graph representation
@ reflexive: Vac A: (a,a) € R
@ symmetric: Va,be A: (a,b) € R= (b,a) € R
© antisymmetric: Va,bc A: (a,b) € R= (b,a) € R
@ transitive: Va,b,c € A: (a,b) € RA(b,c) € R= (a,c) € R
1+4: preorder
1+4+2: equivalence =-partition in equivalence classes [a] = {b: (a,b) € R}
1+4+3: partial order (then total order)

CS 455/555 (S. D. Bruda) Fall 2020 1/7



FUNCTIONS AND CARDINALITY

@ Functions: f: A — B; special relations; one-to-one, onto, bijection

o Natural isomorphism = “natural” bijection (e.g. between A x B x C and
A x (B x C), between Aand {{a} : a € A})

CS 455/555 (S. D. Bruda) Fall 2020 2/7



FUNCTIONS AND CARDINALITY

@ Functions: f: A — B; special relations; one-to-one, onto, bijection
o Natural isomorphism = “natural” bijection (e.g. between A x B x C and
A x (B x C), between Aand {{a} : ac A})
@ Cardinality: Binary relation (equivalence!) £ over the set of all sets

o (A, B) € € also denoted by |A| = |B| =-A and B are equinumerous = there
exists a bijectione: A— B
o Interesting kind of sets
o finite: (A, {1,2,...,n}) € € for some n € N; also written |A| = n
@ (infinitely) countable: |A] = |IN| (count the elements)
@ uncountable

e IsIN x IN countable?

CS 455/555 (S. D. Bruda) Fall 2020 2/7



PROOF TECHNIQUES

@ Induction: If
@ 0cA and
Q@ vVvn:{0,1,....nfCA=n+1€cA
then A=N

CS 455/555 (S. D. Bruda) Fall 2020 3/7



PROOF TECHNIQUES

@ Induction: If

@ 0cAand
Q@ vVvn:{0,1,....nfCA=n+1€cA
then A=N
@ Pigeonhole principle: If |A| > |B| then there is no one-to-one function
f:A—B

o Useful example: If there is a path between vertices a and b of a graph with n
vertices then there is a path between a and b of length at most n

CS 455/555 (S. D. Bruda) Fall 2020 3/7



PROOF TECHNIQUES

@ Induction: If

@ 0cAand
Q@ vVvn:{0,1,....nfCA=n+1€cA
then A=N
@ Pigeonhole principle: If |A] > |B| then there is no one-to-one function
f:A—B

o Useful example: If there is a path between vertices a and b of a graph with n
vertices then there is a path between a and b of length at most n

@ Diagonalization: Given some relation R C A x A, let

R.={b:becAA(ab) e R} D={a:acAn(aa) ¢ R}

Then D # R,forany ac A

@ Useful in proofs by contradiction
o Interesting examples: 2™ is uncountable; [0, 1] is uncountable

CS 455/555 (S. D. Bruda) Fall 2020 3/7



CLOSURES

@ RC D' forsomen>0,BC D

@ Bis closed under R if b,y 1 € B whenever by, b, ..., b, € Band
(b1,bo,...,bp,bpr1) € R

@ Closure property: “Bis closed under Ry, Ro, ..., Ry’

@ Let P be a closure property (under Ry, Ro, ..., R;) and AC D. Then
there exists a minimal B such that A C B and P holds for B
@ Bis the closure of Aunder Ry, R, ..., Ry
o Useful example: The reflexive and transitive closure of R is the closure of R
under reflexivity and transitivity

CS 455/555 (S. D. Bruda) Fall 2020 4/7



ALPHABETS AND STRINGS

@ The math of strings of symbols (such as strings of bits)
@ Alphabet X: a finite set of symbols

@ Strings (not sets!) over an alphabet

@ The set of all strings over ¥: ©*

@ Empty string: ¢ (also A, in the text e)

@ Operations: length (Jw|), concatenation (- or juxtaposition), substring,
suffix, prefix

@ Length over a set A: |w|, is the length of the string w from which all the
symbols not in A have been erased

@ Abuse of notation: |w|, is a shorthand for |w/
@ Exponentiation: w°® = ¢; w't' = wiw
@ Reversal: w=e=wR =¢;foraec ¥: w=ua= wk = aul

CS 455/555 (S. D. Bruda) Fall 2020 5/7



LANGUAGES

@ Language: set of strings

@ Can be finite, infinite, countable, etc

@ X*is alanguage (countable?)

@ Operations: union, intersection, difference, complement (A = X* \ A)
@ Concatenation: LiLy = {wyws : wqy € Ly Aws € Lo}

@ Kleene star (or closure—under what?):

L'={wiws---wp:n>0AV1<i<n:welL}

@ Are there languages that cannot be represented?
@ We generally work with mathematical descriptions
@ Generators are useful for describing languages

@ Generally once the language is described we find convenient to work with
a regognition device (is it the case that w € L?) instead

CS 455/555 (S. D. Bruda) Fall 2020 6/7



REGULAR EXPRESSIONS AND

REGULAR LANGUAGES

@ We start with very simple languages and then we combine them using a
set of usual set operations
o The set of regular languages is then the closure of {{a} : a€ £} U {0}
under concatenation, union, and Kleene star
@ Simpler to work with an inductive definition: Regular expressions and
their associated languages are defined as follows
o (is aregular expression; L(0) =10
e ais aregularexpressionforallae X; L(a)= {a}
e If « and B are regular expressions then so are a3, a« U 8, and a*;
L(apf) = L()L(B) L(aUB)=L(a)UL(B) L(a")=L(a)"
o Nothing else is a regular expression
@ Regular expressions are language generators

@ The set REG of regular languages contain exactly all the languages
generated by regular expressions

CS 455/555 (S. D. Bruda) Fall 2020 7/7



