CS 455/555: Finite automata

Stefan D. Bruda

Fall 2020

AUTOMATA (FINITE OR NOT)

Generally any automaton

- Has a finite-state control
- Scans the input one symbol at a time
- Takes an action based on the currently scanned symbol and the current state
- The action taken may yield a different current state
- May make use of some form of extra storage

CS 455/555 (S. D. Bruda) Fall 2020 1 / 11

AUTOMATA (FINITE OR NOT)

- Generally any automaton
 - Has a finite-state control
 - Scans the input one symbol at a time
 - Takes an action based on the currently scanned symbol and the current state
 - The action taken may yield a different current state
 - May make use of some form of extra storage

- A finite automaton scans the input from left to right only and uses no additional storage
 - It cannot go back in the input
 - It can only remember (using the finite state control) a finite amount of information about the already seen input

CS 455/555 (S. D. Bruda) Fall 2020 1 / 11

DETERMINISTIC FINITE AUTOMATA

- A deterministic finite automaton is a tuple $M = (K, \Sigma, \delta, s, F)$
 - K ⇒ finite set of states
 - $\bullet \;\; \Sigma \Rightarrow \text{input alphabet}$
 - $F \subseteq K \Rightarrow$ set of final states
 - $s \in K \Rightarrow$ initial state
 - $\delta: K \times \Sigma \to K \Rightarrow$ transition function
- Configuration: $c \in K \times \Sigma^*$
- Yields in one step: (q, aw) ⊢_M (q', w) iff a ∈ Σ and δ(q, a) = q'
 ⊢_M^{*} ⇒ reflexive and transitive closure
- w is accepted by M iff $\exists q \in F : (s, w) \vdash_{M}^{*} (q, \varepsilon)$
- The language accepted by M:

$$\mathcal{L}(M) = \{ w \in \Sigma^* : \exists q \in F : (s, w) \vdash_M^* (q, \varepsilon) \}$$

Nondeterministic Finite Automata

- A nondeterministic finite automaton is a tuple $M = (K, \Sigma, \Delta, s, F)$
 - K ⇒ finite set of states
 - $\Sigma \Rightarrow$ input alphabet
 - $F \subseteq K \Rightarrow$ set of final states
 - $s \in K \Rightarrow$ initial state
 - $\Delta \subseteq K \times (\Sigma \cup \{\varepsilon\}) \times K \Rightarrow$ transition relation
- Configuration: $c \in K \times \Sigma^*$
- Yields in one step: $(q, aw) \vdash_{M} (q', w)$ iff $a \in \Sigma \cup \{\varepsilon\}$ and $(q, a, q') \in \Delta$ • $\vdash_{M}^{*} \Rightarrow$ reflexive and transitive closure
- w is accepted by M iff $\exists q \in F : (s, w) \vdash_{M}^{*} (q, \varepsilon)$
- The language accepted by M:

$$\mathcal{L}(M) = \{ w \in \Sigma^* : \exists q \in F : (s, w) \vdash_M^* (q, \varepsilon) \}$$

DETERMINISM VERSUS NONDETERMINISM

- Languages accepted by finite automata?
 - Of finite strings for sure
- Deterministic FA ⇒special case of nondeterministic FA
- In fact the two kind of finite automaton accept the same languages
- $\bullet \ \ \textit{M} = (\textit{K}, \Sigma, \Delta, \textit{s}, \textit{F}) \Rightarrow \textit{M}' = (\textit{K}', \Sigma, \delta', \textit{s}', \textit{F}') \text{ such that } \mathcal{L}(\textit{M}) = \mathcal{L}(\textit{M}')$
 - $K' = 2^K$
 - Let E(q) be the closure of $\{q\}$ under $\{(p,r):(p,\varepsilon,r)\in\Delta\}$
 - s' = E(s)
 - $F' = \{Q \subseteq K : Q \cap F \neq \emptyset\}$
 - $\delta'(Q, a) = \bigcup \{ E(p) : p \in K, (q, a, p) \in \Delta \text{ for some } q \in Q \}$ (proof on p. 71)
- DFA are more efficient, potentially difficult to understand, and often considerably larger (how much larger?)

- $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$. Can we construct $M = (K, \Sigma, \Delta, s, F)$ such that
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2)$ (closure under union)?
 - $\mathcal{L}(M) = \mathcal{L}(M_1)\mathcal{L}(M_2)$ (closure under concatenation)?
 - $\mathcal{L}(M) = \mathcal{L}(M_1)^*$ (closure under Kleene star)?
 - $\mathcal{L}(M) = \overline{\mathcal{L}(M_1)}$ (closure under complement)?
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$ (closure under intersection)?

CS 455/555 (S. D. Bruda) Fall 2020

- $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$. Can we construct $M = (K, \Sigma, \Delta, s, F)$ such that
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2)$ (closure under union)? $K = K_1 \cup K_2$ $F = F_1 \cup F_2$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \varepsilon, s_1), (s, \varepsilon, s_2)\}$
 - $\mathcal{L}(M) = \mathcal{L}(M_1)\mathcal{L}(M_2)$ (closure under concatenation)?
 - $\mathcal{L}(M) = \mathcal{L}(M_1)^*$ (closure under Kleene star)?
 - $\mathcal{L}(M) = \overline{\mathcal{L}(M_1)}$ (closure under complement)?
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$ (closure under intersection)?

CS 455/555 (S. D. Bruda) Fall 2020 5 / 1°

- $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$. Can we construct $M = (K, \Sigma, \Delta, s, F)$ such that
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2)$ (closure under union)? $K = K_1 \cup K_2$ $F = F_1 \cup F_2$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \varepsilon, s_1), (s, \varepsilon, s_2)\}$
 - $\mathcal{L}(M) = \mathcal{L}(M_1)\mathcal{L}(M_2)$ (closure under concatenation)? $s = s_1$ $F = F_2$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(f, \varepsilon, s_2) : f \in F_1\}$
 - $\mathcal{L}(M) = \mathcal{L}(M_1)^*$ (closure under Kleene star)? $s = s_1$ $F = F_1$ $\Delta = \Delta_1 \cup \{(f, \varepsilon, s_1) : f \in F_1\} \cup \{(s_1, \varepsilon, f) : f \in F_1\}$
 - $\mathcal{L}(M) = \frac{\mathcal{L}(M_1)}{\mathcal{L}(M_1)}$ (closure under complement)?
 - $s = s_1$ $\delta = \delta_1$ $F_1 = K \setminus F$
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$ (closure under intersection)?

CS 455/555 (S. D. Bruda) Fall 2020 5 / 1°

- $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$. Can we construct $M = (K, \Sigma, \Delta, s, F)$ such that
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cup \mathcal{L}(M_2)$ (closure under union)? $K = K_1 \cup K_2$ $F = F_1 \cup F_2$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \varepsilon, s_1), (s, \varepsilon, s_2)\}$
 - $\mathcal{L}(M) = \mathcal{L}(M_1)\mathcal{L}(M_2)$ (closure under concatenation)? $s = s_1$ $F = F_2$ $\Delta = \Delta_1 \cup \Delta_2 \cup \{(f, \varepsilon, s_2) : f \in F_1\}$
 - $\mathcal{L}(M) = \mathcal{L}(M_1)^*$ (closure under Kleene star)? $s = s_1$ $F = F_1$ $\Delta = \Delta_1 \cup \{(f, \varepsilon, s_1) : f \in F_1\} \cup \{(s_1, \varepsilon, f) : f \in F_1\}$
 - $\mathcal{L}(M) = \overline{\mathcal{L}(M_1)}$ (closure under complement)? $s = s_1$ $\delta = \delta_1$ $F_1 = K \setminus F$
 - $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$ (closure under intersection)?

 $\mathcal{L}(M_1) \cap \mathcal{L}(M_2) = \overline{\mathcal{L}(M_1)} \cup \overline{\mathcal{L}(M_1)}$

CLOSURE UNDER INTERSECTION (CONSTRUCTIVE)

- $M_1 = (K_1, \Sigma, s_1, \delta_1, F_1), M_2 = (K_2, \Sigma, s_2, \delta_2, F_2) \Rightarrow M = (K, \Sigma, s, \delta, F)$ such that $\mathcal{L}(M_1) \cap \mathcal{L}(M_2) = \mathcal{L}(M)$
- M must somehow run M_1 and M_2 "in parallel" to determine whether both accept the input
- It follows that at any given time we have to keep track of the current states of both M_1 and M_2 . We thus put $K = K_1 \times K_2$
- At the beginning of the computation both M_1 and M_2 are in their respective initial states, so $s = (s_1, s_2)$
- Similarly, in order for the input to be accepted, both M_1 and M_2 must be in one of their respective final states, so $F = F_1 \times F_2$
- Finally, δ should allow M to perform simultaneously exactly one transition of M_1 and exactly one transition of M_2 : $\delta((q_1, q_2), a) = (q'_1, q'_2)$ iff $\delta_1(q_1, a) = q'_1$ and $\delta_2(q_2, a) = q'_2$

CS 455/555 (S. D. Bruda) Fall 2020 6 / 11

• Theorem: Finite automata accept exactly all the languages in REG

CS 455/555 (S. D. Bruda) Fall 2020 7 / 11

- Theorem: Finite automata accept exactly all the languages in REG
- ⊇:
 - REG = closure of $\{\{a\}: a \in \Sigma\} \cup \emptyset$ under union, concatenation, and Kleene star
 - Clearly FA accept $\{a\}$, \emptyset and are closed under the above operations
 - So FA accept all REG (closure is minimal)

CS 455/555 (S. D. Bruda) Fall 2020 7 / 11

- **Theorem:** Finite automata accept exactly all the languages in REG
- ⊇:
 - REG = closure of $\{\{a\}: a \in \Sigma\} \cup \emptyset$ under union, concatenation, and Kleene star
 - Clearly FA accept $\{a\}$, \emptyset and are closed under the above operations
 - So FA accept all REG (closure is minimal)
- ⊆:
 - Let $M = (\{q_1, q_2, ..., q_n\}, \Sigma, \Delta, q_1, F)$
 - Let $\langle i, j, k \rangle$ be the path from q_i to q_j of rank k (i.e., q_{α} in the path implies $\alpha \leq k$)
 - Let R(i,j,k) be the set of strings in Σ^* along all the paths $\langle i,j,k\rangle$
 - Obviously, $\mathcal{L}(M) = \bigcup \{R(1,j,n) : q_j \in F\}$
 - We prove that all R(i, j, k) are regular

CS 455/555 (S. D. Bruda) Fall 2020 7 / 11

- **Theorem:** Finite automata accept exactly all the languages in REG
- ⊇:
 - REG = closure of $\{\{a\}: a \in \Sigma\} \cup \emptyset$ under union, concatenation, and Kleene star
 - \bullet Clearly FA accept $\{a\},\,\emptyset$ and are closed under the above operations
 - So FA accept all REG (closure is minimal)
- ⊆:
 - Let $M = (\{q_1, q_2, \dots, q_n\}, \Sigma, \Delta, q_1, F)$
 - Let $\langle i, j, k \rangle$ be the path from q_i to q_j of rank k (i.e., q_{α} in the path implies $\alpha \leq k$)
 - Let R(i, j, k) be the set of strings in Σ^* along all the paths (i, j, k)
 - Obviously, $\mathcal{L}(M) = \bigcup \{R(1, j, n) : q_j \in F\}$
 - We prove that all R(i, j, k) are regular by induction over k
 - basis: All the $\langle i, j, 0 \rangle$ are transitions of M only, so R(i, j, k) are clearly regular
 - inductive hypothesis: all the R(i, j, k 1) are regular
 - $R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$
 - then R(i, j, k) are regular given the closure of regular expressions under union, concatenation, and Kleene star

- Easy to eliminate unreachable states, but this does not yield an optimal automaton
- Can also merge states that are equivalent to others

CS 455/555 (S. D. Bruda) Fall 2020 8 / 11

- Easy to eliminate unreachable states, but this does not yield an optimal automaton
- Can also merge states that are equivalent to others
 - Equivalent states are states that produce the same strings
- Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. Then $x \approx_L y$ if $xz \in L$ iff $yz \in L$ for all $x \in \Sigma^*$

 $\bullet \ [x] = \{y \in \Sigma^* : y \approx_L x\}$

CS 455/555 (S. D. Bruda) Fall 2020 8 / 11

- Easy to eliminate unreachable states, but this does not yield an optimal automaton
- Can also merge states that are equivalent to others
 - Equivalent states are states that produce the same strings
- Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. Then $x \approx_L y$ if $xz \in L$ iff $yz \in L$ for all $x \in \Sigma^*$
 - $\bullet \ [x] = \{y \in \Sigma^* : y \approx_L x\}$
- Let $M = (K, \Sigma, \delta, s, f)$. Then $x \backsim_M y$ iff there exists $q \in K$ such that $(s, x) \vdash_M^* (q, \varepsilon)$ and $(s, y) \vdash_M^* (q, \varepsilon)$
 - $x \sim_M y$ implies $x \approx_{\mathcal{L}(M)} y$
 - The number of states of M must be at least as large as the number of equivalence classes in $\mathcal{L}(M)$ under \approx

Theorem

Let $L \in \Sigma^*$ be a regular language. Then there exists a deterministic finite automaton with precisely as many states as there are equivalence classes in \approx_l

- Easy to eliminate unreachable states, but this does not yield an optimal automaton
- Can also merge states that are equivalent to others
 - Equivalent states are states that produce the same strings
- Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$. Then $x \approx_L y$ if $xz \in L$ iff $yz \in L$ for all $x \in \Sigma^*$ • $[x] = \{y \in \Sigma^* : y \approx_L x\}$
- Let $M = (K, \Sigma, \delta, s, f)$. Then $x \backsim_M y$ iff there exists $q \in K$ such that $(s, x) \vdash_M^* (q, \varepsilon)$ and $(s, y) \vdash_M^* (q, \varepsilon)$
 - $x \backsim_M y$ implies $x \approx_{\mathcal{L}(M)} y$
 - The number of states of M must be at least as large as the number of equivalence classes in $\mathcal{L}(M)$ under \approx

Theorem

Let $L \in \Sigma^*$ be a regular language. Then there exists a deterministic finite automaton with precisely as many states as there are equivalence classes in \approx_L

$$K = \{[x] : x \in \Sigma^*\}$$
, the set of equivalence classes under $\approx_L s = [\varepsilon]$ $F = \{[x] : x \in L\}$ $\delta([x], a) = [xa]$

ALGORITHM FOR STATE MINIMIZATION

- Let $M = (K, \Sigma, \delta, s, f)$. Let $A_M \subseteq K \times \Sigma^*$ such that $(q, w) \in A_M$ iff $(q, w) \vdash_M^* (f, \varepsilon)$
- Let $q \equiv p$ iff for all $z \in \Sigma^*$: $(q, z) \in A_M$ iff $(p, z) \in A_M$
- \equiv can be computed iteratively ($\equiv_0, \equiv_1, \equiv_2, ...$) as follows:
 - \bullet \bullet partitions K into F and $K \setminus F$
 - **2** repeat for $n \in \mathbb{N}$:
 - **1** $q \equiv_n p$ whenever $q \equiv_{n-1} p$ and $\delta(q, a) \equiv_{n-1} \delta(p, a)$ for all $a \in \Sigma$
 - **1 until** \equiv_n is the same as \equiv_{n-1}

ALGORITHM FOR STATE MINIMIZATION

- Let $M = (K, \Sigma, \delta, s, f)$. Let $A_M \subseteq K \times \Sigma^*$ such that $(q, w) \in A_M$ iff $(q, w) \vdash_M^* (f, \varepsilon)$
- Let $q \equiv p$ iff for all $z \in \Sigma^*$: $(q, z) \in A_M$ iff $(p, z) \in A_M$
- \equiv can be computed iteratively ($\equiv_0, \equiv_1, \equiv_2, ...$) as follows:
 - \bigcirc \equiv_0 partitions K into F and $K \setminus F$
 - **2** repeat for $n \in \mathbb{N}$:
 - **1** $q \equiv_n p$ whenever $q \equiv_{n-1} p$ and $\delta(q, a) \equiv_{n-1} \delta(p, a)$ for all $a \in \Sigma$
 - **1 until** \equiv_n is the same as \equiv_{n-1}
- \equiv_n is a proper refinement of \equiv_{n-1} so the algorithm terminates after at most |K|-1 iterations \Rightarrow polynomial complexity

ALGORITHMS FOR REGULAR LANGUAGES

- nondeterministic to deterministic FA ⇒exponential time
- nondeterministic FA to regular expression ⇒exponential time
 - O(|K|) computations of R(i,j,k), but R(i,j,k) doubles each time
- Whether two FA or regular expressions accept/generate the same language
 - polynomial time for DFA
 - likely exponential time for NFA, regular expressions
- Decide whether $w \in \mathcal{L}(M)$:
 - O(|w|) if M is deterministic
 - $O(|K|^2|w|)$ if M is nondeterministic
- Typical application of regular languages: pattern matching

 $L_x = \{ w \in \Sigma^* : x \text{ is a substring of } w \}$

CS 455/555 (S. D. Bruda) Fall 2020 10 / 11

REGULAR AND NON-REGULAR LANGUAGES

- Regular languages can be described by regular expressions, finite automata (deterministic or not), and any combination of union, concatenation, intersection, complement, Kleene star of the above
- Languages that are not regular can be found using a pumping theorem:

Theorem (Pumping regular languages)

Let L be a regular language. Then there exists $n \ge 1$ such that any $w \in L$ with $|w| \ge n$ can be written as w = xyz with

- $y \neq \varepsilon$
- $|xy| \leq n$
- $xy^iz \in L$ for all $i \ge 0$

Trivial proof using the pigeonhole principle

• Typical examples of non-regular languages: $\{a^nb^n : n \ge 0\}$, $\{a^p : p \text{ is prime}\}$, $\{a^nb^nc^m : n, m \ge 0\}$