CS 455/555: Finite automata

Stefan D. Bruda

Fall 2020

AUTOMATA (FINITE OR NOT)

@ Generally any automaton

Has a finite-state control

Scans the input one symbol at a time
Takes an action based on the currently
scanned symbol and the current state
The action taken may yield a different
current state

May make use of some form of extra
storage

CS 455/555 (S. D. Bruda)

Input

Storage

Fall 2020

1/11

AUTOMATA (FINITE OR NOT)

@ Generally any automaton

@ Has a finite-state control Tnput HIE

@ Scans the input one symbol at a time

o Takes an action based on the currently
scanned symbol and the current state

o The action taken may yield a different
current state

e May make use of some form of extra
storage

@ A finite automaton scans the input from left to right only and uses no
additional storage
e It cannot go back in the input
@ It can only remember (using the finite state control) a finite amount of
information about the already seen input

Storage

CS 455/555 (S. D. Bruda) Fall 2020 1/11

DETERMINISTIC FINITE AUTOMATA

@ A deterministic finite automaton is a tuple M = (K, X, 4, s, F)

e K = finite set of states

@ ¥ = input alphabet

o F C K = set of final states

e s € K = initial state

@ §: K x ¥ — K = transition function

@ Configuration: c € K x ©*
@ Yields in one step: (q,aw) by (q',w) iff ae X and 6(g,a) = ¢’
e +j, = reflexive and transitive closure

@ wis accepted by Miff 3g € F: (s,w) 3, (q,¢)
@ The language accepted by M:

LM)={wexX*:3geF:(s,w)k}(q,¢e)}

CS 455/555 (S. D. Bruda) Fall 2020 2/11

NONDETERMINISTIC FINITE AUTOMATA

@ A nondeterministic finite automaton is a tuple M = (K, X, A, s, F)

e K = finite set of states

@ ¥ = input alphabet

o F C K = set of final states

e s € K = initial state

o A C K x (XU{e}) x K = transition relation

@ Configuration: c € K x ©*

@ Yields in one step: (q,aw) Fy (@', w)iffaec X U{e} and (q.a,q9') € A
e Iy = reflexive and transitive closure

@ wis accepted by Miff 3g € F: (s,w) 3, (q,¢)

@ The language accepted by M:

LIM)={weX*:3qge F:(s,w)t},(q,2)}

CS 455/555 (S. D. Bruda) Fall 2020 3/11

DETERMINISM VERSUS NONDETERMINISM

@ Languages accepted by finite automata?
o Of finite strings for sure
@ Deterministic FA =special case of nondeterministic FA
@ In fact the two kind of finite automaton accept the same languages
o M=(K,L,A,s,F)=M =(K',L,d, s, F')such that L(M) = L(M)

° K/ _ 2K

o Let E(q) be the closure of {q} under {(p,r) : (p,e,r) € A}
e s'=E(s)

e FF={QCK:QNnF#£0}

¥(Q,a)=U{E(p): p<c K,(q,a,p) € Aforsome g e Q}
(proof on p. 71)

@ DFA are more efficient, potentially difficult to understand, and often
considerably larger (how much larger?)

CS 455/555 (S. D. Bruda) Fall 2020 4/11

CLOSURE PROPERTIES

(Ki,X,Aq, 81, F1) and My = (Kz, X, Ay, Sp, F2). Can we construct
(K,X, A, s, F) such that
o L(M) = L(M;)U L(M.) (closure under union)?

(*] M1 —
M =

o L(M) = L(M;)L(M:) (closure under concatenation)?

o L(M) = L(M;)* (closure under Kleene star)?

o L(M) = L(My) (closure under complement)?

o L(M) = L(M;) N L(M:) (closure under intersection)?

CS 455/555 (S. D. Bruda) Fall 2020 5/11

CLOSURE PROPERTIES

(Ki,X,Aq, 81, F1) and My = (Kz, X, Ay, Sp, F2). Can we construct
(K,X, A, s, F) such that

o L(M) = L(M)U L(M:) (closure under union)?

K=K UK F=FUF A=A1UAU{(S¢e,51),(5,¢ %)}
L(M) = L(M;)L(Mz) (closure under concatenation)?

OM1
M

o L(M) = L(M;)* (closure under Kleene star)?

L(M) = L(M) (closure under complement)?

L(M) = L(My) N L(Mz) (closure under intersection)?

CS 455/555 (S. D. Bruda) Fall 2020 5/11

CLOSURE PROPERTIES

= (K1, X, A1, 81, F1) and Mb = (Kz, X, Az, Sp, F2). Can we construct
=(K,X,A,s, F) such that
o L(M) = L(M;)U L(M.) (closure under union)?
K=K UK F=FUF A=A1UAU{(S¢e,51),(5,¢ %)}
o L(M) = L(M;)L(M:) (closure under concatenation)?
S=85 F=F A:A1UA2U{(f,E,Sz):fEF1}
o L(M) = L(M;)* (closure under Kleene star)?
S= 54 F=F A=A1U{(f,E7S1):f€F1}U{(31,E,f):f€F1}
o L(M) = L(My) (closure under complement)?
S=85 6 = 1 F1:K\F
o L(M) = L(M;) N L(M:) (closure under intersection)?

OM1
M

CS 455/555 (S. D. Bruda) Fall 2020 5/11

CLOSURE PROPERTIES

OM1
M

(Ki,X,Aq, 81, F1) and My = (Kz, X, Ay, Sp, F2). Can we construct

=(K,X,A,s, F) such that

L(M) = L(My) U L(M2) (closure under union)?

K=K UK F=FUF A=A1UAU{(S¢e,51),(5,¢ %)}
L(M) = L(M)L(Mz) (closure under concatenation)?

S= 5 F=F A=A1UA2U{(f,E,Sz)IfEF1}

L(M) = L(Mi)" (closure under Kleene star)?

S= 54 F=F A=A1U{(f,E7S1):f€F1}U{(31,E,f):f€F1}
L(M) = L(My) (closure under complement)?

S= 54 0 =44 F1:K\F

L(M) = L(Mi) N L(M2) (closure under intersection)?

L(My) N L(My) = L(Myr) U L(My)

CS 455/555 (S. D. Bruda) Fall 2020 5/11

”
CLOSURE UNDER INTERSECTION (CONSTRUCTIVE) N

o M = (K1,Z, S1,(51, F1), M, = (Kg, Y, 82,52, Fg) =M= (K, 2., (5, F) such
that L(My) N L(My) = L(M)

@ M must somehow run M; and M, “in parallel” to determine whether both
accept the input

@ It follows that at any given time we have to keep track of the current
states of both My and M. We thus put K = Ki x Kz

@ At the beginning of the computation both M; and M, are in their
respective initial states, so s = (51, s2)

@ Similarly, in order for the input to be accepted, both M; and M, must be in
one of their respective final states, so F = F; x F

@ Finally, § should allow M to perform simultaneously exactly one transition
of My and exactly one transition of Mx: 6((g1. g2), @) = (g, g5) iff
61(1,a) = gy and 02(q2, @) = g3

CS 455/555 (S. D. Bruda) Fall 2020 6/11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

@ Theorem: Finite automata accept exactly all the languages in REG

CS 455/555 (S. D. Bruda) Fall 2020 7/11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

@ Theorem: Finite automata accept exactly all the languages in REG
° D:
o REG = closure of {{a} : a € £} U () under union, concatenation, and Kleene

star
o Clearly FA accept {a}, @ and are closed under the above operations

@ So FA accept all REG (closure is minimal)

CS 455/555 (S. D. Bruda) Fall 2020 7/11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

@ Theorem: Finite automata accept exactly all the languages in REG
e D
o REG = closure of {{a} : a € £} U () under union, concatenation, and Kleene
star
o Clearly FA accept {a}, @ and are closed under the above operations
@ So FA accept all REG (closure is minimal)

o LetM=({q1,q,....qn}, X, A, q1, F)

o Let (i,/, k) be the path from g; to g; of rank k (i.e., q. in the path implies
a < k)

o Let R(i,}, k) be the set of strings in X* along all the paths (i, j, k)

o Obviously, L(M) = U{R(1,j,n): g € F}

o We prove that all R(i, j, k) are regular

CS 455/555 (S. D. Bruda) Fall 2020 7/11

LANGUAGES ACCEPTED BY FINITE AUTOMATA

@ Theorem: Finite automata accept exactly all the languages in REG
e D
o REG = closure of {{a} : a € £} U () under union, concatenation, and Kleene
star
o Clearly FA accept {a}, @ and are closed under the above operations
@ So FA accept all REG (closure is minimal)

° LetM:({q17q27---7qf7}7zaAaq17F)

o Let (i,/, k) be the path from g; to g; of rank k (i.e., q. in the path implies
a < k)
o Let R(i,}, k) be the set of strings in X* along all the paths (i, j, k)
o Obviously, L(M) = U{R(1,j,n) : q € F}
o We prove that all R(i,j, k) are regular by induction over k
e basis: All the (i, j,0) are transitions of M only, so R(i, , k) are clearly regular
e inductive hypothesis: all the R(i,j, k — 1) are regular
e R(i,j,k)=R(i,j,k—1)UR(i,k,k —1)R(k,k, k —1)*R(k,j, k — 1)
e then R(i,j, k) are regular given the closure of regular expressions under

union, concatenation, and Kleene star

CS 455/555 (S. D. Bruda) Fall 2020 7/11

STATE MINIMIZATION

@ Easy to eliminate unreachable states, but this does not yield an optimal
automaton
@ Can also merge states that are equivalent to others

CS 455/555 (S. D. Bruda) Fall 2020 8/11

STATE MINIMIZATION

@ Easy to eliminate unreachable states, but this does not yield an optimal
automaton
@ Can also merge states that are equivalent to others
e Equivalent states are states that produce the same strings
o letLC¥*andx,ye¥*. Thenx =, yifxze Liff yze Lforall x € *
o X]={yex:y~ x}

CS 455/555 (S. D. Bruda) Fall 2020 8/11

STATE MINIMIZATION

@ Easy to eliminate unreachable states, but this does not yield an optimal
automaton
@ Can also merge states that are equivalent to others
e Equivalent states are states that produce the same strings
o letLC¥*andx,ye¥*. Thenx =, yifxze Liff yze Lforall x € *
o X[={yeX :y=ix}
@ Let M= (K,X%,d,s,f). Then x «~ y iff there exists g € K such that
(s.x) iy (9,€) and (s, y) (g,)
@ X vy yimplies x =) y
o The number of states of M must be at least as large as the number of
equivalence classes in £(M) under ~

Let L € Y* be a regular language. Then there exists a deterministic finite
automaton with precisely as many states as there are equivalence classes in

L

CS 455/555 (S. D. Bruda) Fall 2020 8/11

STATE MINIMIZATION

@ Easy to eliminate unreachable states, but this does not yield an optimal
automaton
@ Can also merge states that are equivalent to others
e Equivalent states are states that produce the same strings
o letLC¥*andx,ye¥*. Thenx =, yifxze Liff yze Lforall x € *
o X[={yeX :y=ix}
@ Let M= (K,X%,d,s,f). Then x «~ y iff there exists g € K such that
(s.x) iy (9,€) and (s, y) (g,)
@ X vy yimplies x =) y
o The number of states of M must be at least as large as the number of
equivalence classes in £(M) under ~

Let L € Y* be a regular language. Then there exists a deterministic finite
automaton with precisely as many states as there are equivalence classes in

L

K = {[x] : x € ¥*}, the set of equivalence classes under ~;
s=[F={l:xel} 4(x],a) =[x

CS 455/555 (S. D. Bruda) Fall 2020 8/11

ALGORITHM FOR STATE MINIMIZATION

o LetM=(K,X,d,s,f). Let Ay C K x X* such that (g, w) € Ay iff
(g, w) by (f.€)
o Letg=piffforallze X*: (q,2) € A iff (p,2) € Any
@ = can be computed iteratively (=g, =1, =2, ...) as follows:
@ =, partitions K into Fand K\ F
@ repeat for nc N:
@ g =npwheneverq=,_1 pand é(q,a) =,—1 é(p,a) forallae x
@ until =, is the same as =,_1

CS 455/555 (S. D. Bruda) Fall 2020

9/11

ALGORITHM FOR STATE MINIMIZATION

o LetM=(K,X,d,s,f). Let Ay C K x X* such that (g, w) € Ay iff
(g, w) by (f.€)
o Letg=piffforallze X*: (q,2) € A iff (p,2) € Any
@ = can be computed iteratively (=g, =1, =2, ...) as follows:
@ =, partitions K into Fand K\ F
@ repeat for nc N:
@ g =npwheneverq=,_1 pand é(q,a) =,—1 é(p,a) forallae x
@ until =, is the same as =,_1
@ =, is a proper refinement of =,_1 so the algorithm terminates after at
most |K| — 1 iterations = polynomial complexity

CS 455/555 (S. D. Bruda) Fall 2020 9/11

ALGORITHMS FOR REGULAR LANGUAGES

@ nondeterministic to deterministic FA =-exponential time
@ nondeterministic FA to regular expression =-exponential time
o O(|K|) computations of R(/,, k), but R(i,j, k) doubles each time

@ Whether two FA or regular expressions accept/generate the same
language
@ polynomial time for DFA
o likely exponential time for NFA, regular expressions

@ Decide whether w € L(M):

o O(|w|) if M is deterministic
e O(|K|?|w|) if M is nondeterministic

@ Typical application of regular languages: pattern matching

Ly ={w e X*: xis a substring of w}

CS 455/555 (S. D. Bruda) Fall 2020 10/11

REGULAR AND NON-REGULAR LANGUAGES

@ Regular languages can be described by regular expressions, finite
automata (deterministic or not), and any combination of union,
concatenation, intersection, complement, Kleene star of the above

@ Languages that are not regular can be found using a pumping theorem:

Theorem (Pumping regular languages)
Let L be a regular language. Then there exists n > 1 such that any w € L with
|w| > n can be written as w = xyz with

o yFe

o xy|<n

o xy'zeLforalli>0

Trivial proof using the pigeonhole principle

@ Typical examples of non-regular languages: {a"b" : n > 0},
{&° : pis prime}, {a"b"c™ : n,m > 0}

CS 455/555 (S. D. Bruda) Fall 2020 1/11

