CS 455/555: Complexity theory

Stefan D. Bruda

Fall 2020

TIME MATTERS

@ Forsome f: N — N, a Turing machine M = (K, X, A, s, {h}) is f-time
bounded iff for any w € L*: there is no configuration C such that
(s, #w#) H"* ¢
@ M is polynomially (time) bounded iff M is p-time bounded for some
polynomial p
@ L < ¥*is polynomially decidable iff there is a deterministic, polynomially
bounded Turing machine that decides L = complexity class P
@ P is the class of exactly all the polynomially decidable languages
e P is closed under complementation
e There are recursive languages that are not in P (page 277)

E = {enc(M)#enc(w) : M accepts w after at most 2/*! steps}

o P (as well as subsequent complexity classes) are based on worst-case
analysis

CS 455/555 (S. D. Bruda) Fall 2020 1/19

TIME MATTERS

@ Forsome f: N — N, a Turing machine M = (K, X, A, s, {h}) is f-time
bounded iff for any w € L*: there is no configuration C such that
(s, #w#) H"* ¢
@ M is polynomially (time) bounded iff M is p-time bounded for some
polynomial p
@ L < ¥*is polynomially decidable iff there is a deterministic, polynomially
bounded Turing machine that decides L = complexity class P
@ P is the class of exactly all the polynomially decidable languages
e P is closed under complementation
e There are recursive languages that are not in P (page 277)

E = {enc(M)#enc(w) : M accepts w after at most 2/*! steps}

o P (as well as subsequent complexity classes) are based on worst-case
analysis
@ Complexity class N'P: the class of exactly all the languages decided by
nondeterministic, polynomially bounded Turing machines

CS 455/555 (S. D. Bruda) Fall 2020 1/19

TIME MATTERS

@ Forsome f: N — N, a Turing machine M = (K, X, A, s, {h}) is f-time
bounded iff for any w € L*: there is no configuration C such that
(s, #w#) H"* ¢
@ M is polynomially (time) bounded iff M is p-time bounded for some
polynomial p
@ L < ¥*is polynomially decidable iff there is a deterministic, polynomially
bounded Turing machine that decides L = complexity class P
@ P is the class of exactly all the polynomially decidable languages
e P is closed under complementation
e There are recursive languages that are not in P (page 277)

E = {enc(M)#enc(w) : M accepts w after at most 2/*! steps}

o P (as well as subsequent complexity classes) are based on worst-case
analysis
@ Complexity class N'P: the class of exactly all the languages decided by
nondeterministic, polynomially bounded Turing machines
@ Complexity class £EXP: exactly all the languages decided by
exponentially-bounded, deterministic Turing machines
@ PCc NPcCEXP

CS 455/555 (S. D. Bruda) Fall 2020 1/19

f
ALTERNATIVE DEFINITION OF N'P: CERTIFICATES N

@ Le¥* ¥*is polynomially balanced iff there exists a polynomial p such
thatvVx;yelLl: |yl <p(|x])
@ L e NP iff there exists a polynomially balanced language L’ such that
Q@ L'eP,and
Q L={xex*:3yexs* . x;yel’}
@ L’ is the language of succinct certificates for L (every x € L has a succinct
certificate y)

@ An NP problem has solutions that are easy to check

CS 455/555 (S. D. Bruda) Fall 2020 2/19

LANGUAGES? PROBLEMS?

@ Given some computational problem that requires certain resource (time)
bounds to solve, it is generally easy to find a language that requires the
same resource bounds to decide

e Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

@ Traveling salesman (TSP): Given n > 2, a matrix (dj)1<ij<n With dj > 0
and d; = 0, find a permutation = of {1,2,..., n} such that ¢(x), the cost
of 7 is minimal, where ¢(7) = Ay, + Grprey + - + A,y + Oy

e TSP the language (take 1): {((dj)1<ij<n, B) : n = 2,B > 0, there exists a
permutation = such that ¢(7) < B}

o TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once

@ Note: A cycle that uses all the edges exactly once is Eulerian; a graph G is
Eulerian iff

@ There is a path between any two vertices that are not isolated, and
@ Every vertex has an in-degree equal to its out-degree

CS 455/555 (S. D. Bruda) Fall 2020 3/19

LANGUAGES? PROBLEMS? (CONT’D)

@ Clique: Given an undirected graph G = (V, E), find the maximal set
Cc VsuchthatvVv;,vie C: (v, V) e E (Cis aclique of G)
o Clique, the language: {(G = (V,E),K) : K > 2 : there exists a clique C of V
such that |C| = K}

CS 455/555 (S. D. Bruda) Fall 2020 4/19

LANGUAGES? PROBLEMS? (CONT’D)

@ Clique: Given an undirected graph G = (V, E), find the maximal set
Cc VsuchthatvVv;,vie C: (v, V) e E (Cis aclique of G)
o Clique, the language: {(G = (V,E),K) : K > 2 : there exists a clique C of V
such that |C| = K}
@ SAT: Fix a set of variables X = {xy, X2, ..., Xp} and let
X= {X_17X_2)"'7X_n}
e An element of X U X is called a literal
o A formula (or set/conjunction of clauses) is a1 A ag A -+ A am Where
Q= Xa; V Xay V-V Xa, 1 < i< m,and xs, € X U X
@ An interpretation (or truth assignment) is a function /: X — {T, L}
o Aformula F is satisfiable iff there exists an interpretation under which F
evaluatesto T.
o SAT = {F : F is satisfiable }

@ 2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)

CS 455/555 (S. D. Bruda) Fall 2020 4/19

2-SATe P l

@ Algorithm purge(F, x; € X): Erase from F X;, erase from F all the clauses
that contain x;
@ Algorithm satisfy(F, X):
@ For every singleton clause x;: Set /(x;) = T, purge(F, x;)
@ For every singleton clause X;: Set /(x;) = L, purge(F,X;)
@ If we have an empty clause then report F as unsatisfiable and stop
@ Pick x; € X, set X to X\{x;}, and copy F into F’
@ Setl(x) =T, purge(F, x;)
@ If we have an empty clause, then
@ Setl(x;) = L, purge(F’,X;)
@ If we have an empty clause then report F as unsatisfiable and stop
© SetFtoF’

@ If x = & then report F as satisfiable and stop, otherwise repeat from Step 4

CS 455/555 (S. D. Bruda) Fall 2020 5/19

REDUCTIONS, REVISITED

@ The general idea of reductions:

- W (inL'?)
w :‘ ’ V :‘ M e Y/N
(inL?) |(L—L) | (forL)
M (for L)

@ Reductions can be used in proofs by contradiction:

o If L does not have property P and reduction 7 from L to L’ preserves P
e Then L' does not have P

@ Example: Turing reductions and undecidable problems

CS 455/555 (S. D. Bruda) Fall 2020 6/19

POLYNOMIAL REDUCTIONS

@ A function f: X* — ¥* is polynomially computable iff there exists a
polynomially time bounded, deterministic Turing machine that computes it

@ Let Ly, L, € X*; the function 7 : X* — X* is a polynomial reduction if it is
polynomially computable, and V x € X* : x € Ly iff 7(x) € Lp

@ Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

L4 is polynomially reducible to L, and L, € P implies Ly € P I
Polynomial reductions are closed under (functional) composition I

o Direct, constructive proof

CS 455/555 (S. D. Bruda) Fall 2020 7/19

NP-COMPLETE PROBLEMS

@ A problem L is N'P-hard iff for every language L' € NP there exists a
polynomial reduction from L' to L

@ A problem L is N'P-complete iff L is AP-hard and L e NP

Let L be some N'P-complete problem; then P = NP iff Le P I

o =: Lis N'P-complete, so L € N'P; however, P = NP andso Le P
e «: LeP,so Lisdecided by a polynomially time bounded deterministic
machine M

@ For any L’ e N"P we have a polynomial reduction 7 from L to L', decided by a
polynomially time bounded, deterministic machine M,

@ Then L’ is decided by the deterministic, polynomially time bounded machine
M-M

CS 455/555 (S. D. Bruda) Fall 2020 8/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable
@ Variables: xj, 1 < i,j < n; x; = T iff vertex / is number j in the
Hamiltonian cycle
@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected

@ at least one vertex is number j

@ no vertex can be in two places at once

@ every vertex must be in the cycle

@ aplace in the cycle can only have one vertex

@ The permutation given by x; is a Hamiltonian cycle

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable
@ Variables: xj, 1 < /,j < n; x; = T iff vertex i is number j in the
Hamiltonian cycle
@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected
@ atleastone vertexis numberj V1 <j<n:XjVv XV -V Xy
@ no vertex can be in two places at once
@ every vertex must be in the cycle
@ aplace in the cycle can only have one vertex

@ The permutation given by x; is a Hamiltonian cycle

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable
@ Variables: xj, 1 < /,j < n; x; = T iff vertex i is number j in the
Hamiltonian cycle
@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected
@ atleastone vertexis numberj V1 <j<n:XjVv XV -V Xy
@ no vertex can be in two places atonce V1 <i,j,k<n,j#Kk:Xj v X,
@ every vertex must be in the cycle
@ aplace in the cycle can only have one vertex

@ The permutation given by x; is a Hamiltonian cycle

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable
@ Variables: xj, 1 < /,j < n; x; = T iff vertex i is number j in the
Hamiltonian cycle
@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected
@ atleastone vertexis numberj V1 <j<n:XjVv XV -V Xy
@ no vertex can be in two places atonce V1 <i,j,k<n,j#Kk:Xj v X,
@ everyvertexmustbeinthecycle V1 <i<n:xjvXgv- v Xn
@ aplace in the cycle can only have one vertex

@ The permutation given by x; is a Hamiltonian cycle

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable

@ Variables: xj, 1 < i,j < n; x; = T iff vertex / is number j in the
Hamiltonian cycle

@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected

@ atleastone vertexis numberj V1 <j<n:XjVv XV -V Xy

@ no vertex can be in two places atonce V1 <ijk<n,j#k: Xij v Xik

@ everyvertexmustbeinthecycle V1 <i<n:xjvXgv- v Xn

@ aplace in the cycle can only have one vertex
V1<ijk<ni#k:XvXg

@ The permutation given by x; is a Hamiltonian cycle

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE

@ Reduction from Hamiltonian cycle to SAT
e Graph G given as adjacency matrix: G=V x V, V ={1,2,... n}
@ G has a Hamiltonian cycle iff 7(G) is satisfiable

@ Variables: xj, 1 < i,j < n; x; = T iff vertex / is number j in the
Hamiltonian cycle

@ Clauses: need to specify that x; represent a permutation (or bijection)
over V; need then to specify that all the vertices in the cycle are actually
connected

@ atleastone vertexis numberj V1 <j<n:XjVv XV -V Xy
@ no vertex can be in two places atonce V1 <i,j,k<n,j#Kk:Xj v X,
@ everyvertexmustbeinthecycle V1 <i<n:xjvXgv- v Xn
@ aplace in the cycle can only have one vertex
V1 <ijk<ni#k:XvXqg
@ The permutation given by x; is a Hamiltonian cycle For all i and k such
that (i, k) ¢ G and assuming that Xx,+1 = X1, we add Xj v Xiji1

CS 455/555 (S. D. Bruda) Fall 2020 9/19

REDUCTION EXAMPLE (CONT'D)

@ We have O(n®) clauses with at most O(n) literals each
@ Each clause may depend on G and n but nothing else
@ The whole set is clearly polynomially computable, as desired
@ Remains to prove that G has a Hamiltonian cycle iff 7(G) is satisfiable
@ Suppose that some interpretation / satisfies 7(G)
e Then for each i exactly one /(x;) is T and for each j exactly one I(x;) is T
(because of 1-4)
e This goes both ways
o if
@ Xj v Xkj11 is true whenever (i,) ¢ G
@ Whenever i = m; and k = ;1 we have I(x;) = T and I(xgj41) = T
@ Therefore the clause Xj v X1 if false, so (i,k) must be an edge in G
@ only if
@ Let 7w be a Hamiltonian cycle
@ We then set I(x;) = T iff j = 7;, which makes 7(G) true

CS 455/555 (S. D. Bruda) Fall 2020 10/19

N'P-COMPLETENESS THEORY IN A NUTSHELL

@ Are there N'P-complete problems at all?
@ Yes, SAT is one (cf. Stephen Cook, 1971)
@ The first is the hard one: we have to show that every problem in A/P
reduces to our problem

@ Then in order to find other N"P-complete problems all we need to do is to
find problems such that some problem already known to be
NP-complete reduces to them

@ This works because polynomial reductions are closed under composition =
are transitive

@ Then it is apparently easy to use the theorem stated earlier:
Let L be some A'P-complete problem; then P = NP iff Le P

CS 455/555 (S. D. Bruda) Fall 2020 11/19

TILING KITCHEN FLOORS

@ Tiling system: D = (D, dy, H, V)
e Dis afinite set of tiles
@ dy € D is the initial corner tile
@ H,V e D x D are the horizontal and vertical tiling restrictions

@ Tiling: f: Ng x Ng — D such that
e f(0,0) =dp
e V0<m<s0<n<s—1:(f(mn),f(mn+1))eV
eV0<sm<s—1,0<n<s:(fimn),f(m+1,n)eH

@ The bounded tiling problem:
o Given a tiling system D, a positive integer s and an initial tiling f, : Ng — D
o Find whether there exists a tiling function f that extends f,

CS 455/555 (S. D. Bruda) Fall 2020 12/19

BOUNDED TILING IS N'P-COMPLETE

@ We need to find reductions from all problems in AP to bounded tiling

CS 455/555 (S. D. Bruda) Fall 2020 13/19

BOUNDED TILING IS N'P-COMPLETE

@ We need to find reductions from all problems in NP to bounded tiling
@ The only thing in common to all the A'P problems is that each of them is
decided by a nondeterministic, polynomially bounded Turing machine
o We therefore find a reduction from an arbitrary such a machine to bounded
tiling

CS 455/555 (S. D. Bruda) Fall 2020 13/19

BOUNDED TILING IS N'P-COMPLETE

@ We need to find reductions from all problems in NP to bounded tiling
@ The only thing in common to all the A'P problems is that each of them is
decided by a nondeterministic, polynomially bounded Turing machine
o We therefore find a reduction from an arbitrary such a machine to bounded

tiling

@ We find a tiling system such that each row in the tiling corresponds to one

configuration of the given Turing machine

. VY(g,a,pb)e
Yaey: A bes :
2 ®.5) 4
2 (g,4)
V(g,a,p,L)eA:
a (p,b)
Lp Lp
(9.2 b

CS 455/555 (S. D. Bruda)

V(g,a,p,R)eA:
a (P, b)
Rp Rp
(9,3 b
Initial tiling:
| wm | we Wn | (S, #)

Fall 2020

13/19

SAT IS N'/P-COMPLETE

@ SATe NP
@ We nondeterministically guess an interpretation and we check that the
interpretation satisfies the formula
o Both of these take linear time
@ SAT is NP-hard
By reduction of bounded tiling to SAT
Consider variables x,mq standing for “tile d is at position (n, m) in the tiling”

Construct clauses such that Xpmg = T iff f(m, n) = d
We first specify that we have a function:

@ each position has at least one tile: VO < m,n < S Xmng, V Xmng, V *
@ no more than one tile in a given position: VO < m,n < s,d # d' : Xpng v Xmng

Then we specify the restrictions H and V:
° (d,d') € D*\H = Xmng v Xms1na' (d,d") € D2\V = Xing v Xnni1a'

@ In fact 3-SAT is also A'P-complete

CS 455/555 (S. D. Bruda) Fall 2020 14/19

PROOF OF N'P-COMPLETENESS

@ To show that a problem is N'P-complete we need to show that

@ The problemis in NP

e Construct a Turing machine, or find succinct certificates
o Usually quite straightforward

@ The problem is A'P-hard
o Exhibit a polynomial reduction from a known N"P-complete problem
@ Reduction can happen from any problem discussed in class and also from
any problem discussed in Sections 7.2 and 7.3 (take those problems as
solved exercises)
e Make sure that you are comfortable with this way of thinking! There are
numerous solved exercises to make you comfortable

CS 455/555 (S. D. Bruda) Fall 2020 15/19

CLIQUE
@ 3-SAT is N'P-complete

CS 455/555 (S. D. Bruda) Fall 2020 16/19

CLIQUE

@ 3-SAT is N'P-complete
e Hint: any clause xy v x2 v - - - X, is logically equivalent with
(X1 vXev X)) A(XovXav XE) A (XgV Xa v X4) Ao A (X o5V Xnot V Xn)
@ CLIQUE = {(G = (V,E),k) : k = 2 : there exists a clique C of V, |C| = k}
Membership in A”P and 3-SAT being reducible to CLIQUE implies CLIQUE
is N'P-complete

CS 455/555 (S. D. Bruda) Fall 2020 16/19

CLIQUE

@ 3-SAT is N'P-complete
e Hint: any clause x1 v X2 v - - - X, is logically equivalent with
(X1 vXev X)) A(XovXav XE) A (XgV Xa v X4) Ao A (X o5V Xnot V Xn)
@ CLIQUE = {(G = (V,E),k) : k = 2 : there exists a clique C of V, |C| = k}
Membership in N’P and 3-SAT being reducible to CLIQUE implies CLIQUE
is N'P-complete
Start from ¢ = Ci A Co A -+ A Gk, construct G = (V, E)
Startwith V = @gand E =
For each clause C; = I{ v I v I add vertices v{, v5, and v§ to V
Add (v/, v’) to E whenever r # s and /] is not the negation of /° (I is and J?
are consistent)

CS 455/555 (S. D. Bruda) Fall 2020 16/19

CLIQUE

@ 3-SAT is N'P-complete
e Hint: any clause x1 v X2 v - - - X, is logically equivalent with
(X1 vXev X)) A(XovXav XE) A (XgV Xa v X4) Ao A (X o5V Xnot V Xn)

@ CLIQUE = {(G = (V,E),k) : k = 2 : there exists a clique C of V, |C| = k}
Membership in A”P and 3-SAT being reducible to CLIQUE implies CLIQUE
is N'P-complete

Start from ¢ = Ci A Co A -+ A Gk, construct G = (V, E)

Startwith V = @gand E =

For each clause C; = I{ v I v I add vertices v{, v5, and v§ to V

Add (v/, v’) to E whenever r # s and /] is not the negation of /° (I is and J?

are consistent)

Suppose that ¢ is satisfiable; then:

@ The interpretation that makes ¢ true makes at least one literal / per clause true
@ The vertex v/ is connected to all the other vertices vjs that make the other

clauses true (these are all consistent with each other)
@ So the vertices v/ form a clique (of size k)

CS 455/555 (S. D. Bruda) Fall 2020 16/19

CLIQUE

@ 3-SAT is N'P-complete
e Hint: any clause xy v x2 v - - - X, is logically equivalent with
(X1 vXev X)) A(XovXav XE) A (XgV Xa v X4) Ao A (X o5V Xnot V Xn)
@ CLiQUE = {(G = (V,E), k) : k = 2 : there exists a clique C of V, |C| = k}
Membership in N’P and 3-SAT being reducible to CLIQUE implies CLIQUE
is N'P-complete

o Startfrom ¢ = Cy A Co A -+ A Ck, construct G = (V, E)

o Startwith V=@ and E =

e For each clause C; = I{ v I5 v I§ add vertices v{, v3, and v§ to V

e Add (v/, v’) to E whenever r # s and /] is not the negation of /° (I is and J?

are consistent)
Suppose that ¢ is satisfiable; then:
@ The interpretation that makes ¢ true makes at least one literal / per clause true
@ The vertex v/ is connected to all the other vertices vjs that make the other
clauses true (these are all consistent with each other)
@ So the vertices v/ form a clique (of size k)
Suppose that G has a clique C of size k; then:
@ C contains exactly one vertex per clause
@ Assigning T to every literal I for which v/ € C is possible (all are consistent with
each other)
@ The assignment makes ¢ true so ¢ is satisfiable

CS 455/555 (S. D. Bruda) Fall 2020 16/19

VERTEX COVER

@ A vertex cover of G= (V,E)isaset V' < V such that
(u,v)e E=ueV vveV

@ VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k}
Membership in AP and CLIQUE being reducible to VERTEX-COVER
implies VERTEX-COVER is N'P-complete

CS 455/555 (S. D. Bruda) Fall 2020 17/19

VERTEX COVER

@ A vertex cover of G= (V,E)isaset V' < V such that
(u,v)e E=ueV vveV
@ VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k}
Membership in AP and CLIQUE being reducible to VERTEX-COVER
implies VERTEX-COVER is N'P-complete
e Startfrom (G = (V, E), k) € GLIQUE
o Compute G = (V, E) where E = (V x V)\E (the complement of G)
e Then (G, k) € CLIQUE iff (G, |V| — k) € VERTEX-COVER

CS 455/555 (S. D. Bruda) Fall 2020 17/19

VERTEX COVER

@ A vertex cover of G= (V,E)isaset V' < V such that
(u,v)e E=ueV vveV

@ VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k}
Membership in AP and CLIQUE being reducible to VERTEX-COVER
implies VERTEX-COVER is N'P-complete

Start from (G = (V, E), k) € CLIQUE

Compute G = (V, E) where E = (V x V)\E (the complement of G)

Then (G, k) e CLIQUE iff (G,|V| — k) € VERTEX-COVER

Suppose that G has a clique C, |C| = k; then:

@ (u,v) ¢ E means that u and v cannot be both in C
@ Thatis, V\C covers every edge (u, v) ¢ E that is, every vertex (u,v) € E
@ Therefore V\C is a vertex cover for G (of size | V| — k)

CS 455/555 (S. D. Bruda) Fall 2020 17/19

VERTEX COVER

@ A vertex cover of G= (V,E)isaset V' < V such that
(u,v)e E=ueV vveV

@ VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k}
Membership in A"P and CLIQUE being reducible to VERTEX-COVER
implies VERTEX-COVER is N'P-complete

Start from (G = (V, E), k) € CLIQUE
Compute G = (V, E) where E = (V x V)\E (the complement of G)
Then (G, k) € CLIQUE iff (G, |V| — k) € VERTEX-COVER
Suppose that G has a clique C, |C| = k; then:
@ (u,v) ¢ E means that u and v cannot be both in C
@ Thatis, V\C covers every edge (u, v) ¢ E that is, every vertex (u,v) € E
@ Therefore V\C is a vertex cover for G (of size | V| — k)
Suppose that G has a vertex cover V' with |V’| = |V| — k; then:
(v)eE=ueV vveV
@ Contrapositive: u¢ V' Av¢ V' = (u,v)¢ E
o Thatis,ue WV Ave WV = (u,v)e E
@ So V\V’is aclique of G (or size k)

CS 455/555 (S. D. Bruda) Fall 2020 17/19

OTHER ISSUES RELATED TO P AND N'P

@ co-NP is the complement of NP (P € co-NP iff P e N'P)
@ Thought to be different from AP
e Pcco-NP,PS NP
o If Peco-NP, Pe NP, and P € P then P is suspected not to be
NP-complete

o Example: the language of composite numbers (aka the integer factorization
problem)

@ in NP and also in co-N'P
@ suspected outside P
@ suspected outside N'P-complete

@ co-N"P-complete problems also definable
@ integer factorization also suspected outside co-ANP-complete

CS 455/555 (S. D. Bruda) Fall 2020 18/19

FURTHER COMPLEXITY THEORY

@ Several complexity classes:
LENLSPSNP<PSPACE = NPSPACE
e L stands for logarithmic space and A\ £ for nondeterministic logarithmic
space
@ The only thing known: N'L # PSPACE
@ So at least one of the inclusions in between must be strict
o But we do not know which ones are strict or not
@ Each inclusion has its own completeness theory, so we have P-complete
and PSPACE-complete problems
@ The reduction for each completeness theory comes from the inner class
@ Indeed, if we go higher then all problems in the given class become complete!
e That is, P-complete problems are defined in terms of A'L reductions,
whereas PSP.ACE-complete problems are defined in terms of NP
reductions

CS 455/555 (S. D. Bruda) Fall 2020 19/19

