CS 455/555: Complexity theory

Stefan D. Bruda

Fall 2020

TIME MATTERS

- For some $f: \mathbb{N} \to \mathbb{N}$, a Turing machine $M = (K, \Sigma, \Delta, s, \{h\})$ is f-time bounded iff for any $w \in \Sigma^*$: there is no configuration C such that $(s, \#w\#) \vdash_M^{f(|w|)+1} C$
- M is polynomially (time) bounded iff M is p-time bounded for some polynomial p
- $L \subseteq \Sigma^*$ is polynomially decidable iff there is a deterministic, polynomially bounded Turing machine that decides $L \Rightarrow$ complexity class \mathcal{P}
 - ullet ${\cal P}$ is the class of exactly all the polynomially decidable languages
 - ullet \mathcal{P} is closed under complementation
 - There are recursive languages that are not in \mathcal{P} (page 277)

$$E = \{ enc(M) \# enc(w) : M \text{ accepts } w \text{ after at most } 2^{|w|} \text{ steps} \}$$

 $\bullet \ \mathcal{P}$ (as well as subsequent complexity classes) are based on worst-case analysis

TIME MATTERS

- For some $f: \mathbb{N} \to \mathbb{N}$, a Turing machine $M = (K, \Sigma, \Delta, s, \{h\})$ is f-time bounded iff for any $w \in \Sigma^*$: there is no configuration C such that $(s, \#w\#) \vdash_M^{f(|w|)+1} C$
- M is polynomially (time) bounded iff M is p-time bounded for some polynomial p
- $L \subseteq \Sigma^*$ is polynomially decidable iff there is a deterministic, polynomially bounded Turing machine that decides $L \Rightarrow$ complexity class \mathcal{P}
 - ullet ${\cal P}$ is the class of exactly all the polynomially decidable languages
 - ullet \mathcal{P} is closed under complementation
 - There are recursive languages that are not in \mathcal{P} (page 277)

$$E = \{ \operatorname{enc}(M) \# \operatorname{enc}(w) : M \text{ accepts } w \text{ after at most } 2^{|w|} \text{ steps} \}$$

- \bullet $\, \mathcal{P}$ (as well as subsequent complexity classes) are based on worst-case analysis
- Complexity class NP: the class of exactly all the languages decided by nondeterministic, polynomially bounded Turing machines

TIME MATTERS

- For some $f: \mathbb{N} \to \mathbb{N}$, a Turing machine $M = (K, \Sigma, \Delta, s, \{h\})$ is f-time bounded iff for any $w \in \Sigma^*$: there is no configuration C such that $(s, \#w\#) \vdash_M^{f(|w|)+1} C$
- M is polynomially (time) bounded iff M is p-time bounded for some polynomial p
- $L \subseteq \Sigma^*$ is polynomially decidable iff there is a deterministic, polynomially bounded Turing machine that decides $L \Rightarrow$ complexity class \mathcal{P}
 - ullet ${\cal P}$ is the class of exactly all the polynomially decidable languages
 - ullet $\mathcal P$ is closed under complementation
 - There are recursive languages that are not in \mathcal{P} (page 277)

$$E = \{ enc(M) \# enc(w) : M \text{ accepts } w \text{ after at most } 2^{|w|} \text{ steps} \}$$

- \bullet $\, \mathcal{P}$ (as well as subsequent complexity classes) are based on worst-case analysis
- Complexity class NP: the class of exactly all the languages decided by nondeterministic, polynomially bounded Turing machines
- Complexity class EXP: exactly all the languages decided by exponentially-bounded, deterministic Turing machines
- $\mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{EXP}$

ALTERNATIVE DEFINITION OF \mathcal{NP} : CERTIFICATES

- $L \in \Sigma^*$; Σ^* is polynomially balanced iff there exists a polynomial p such that $\forall x; y \in L : |y| \leq p(|x|)$
- $L \in \mathcal{NP}$ iff there exists a polynomially balanced language L' such that
 - \bigcirc $L' \in \mathcal{P}$. and
- L' is the language of succinct certificates for L (every $x \in L$ has a succinct certificate y)
- An NP problem has solutions that are easy to check

CS 455/555 (S. D. Bruda) Fall 2020

LANGUAGES? PROBLEMS?

- Given some computational problem that requires certain resource (time) bounds to solve, it is generally easy to find a language that requires the same resource bounds to decide
 - Sometime (but not always) finding an algorithm for deciding the language immediately implies an algorithm for solving the problem
- Traveling salesman (TSP): Given $n \ge 2$, a matrix $(d_{ij})_{1 \le i,j \le n}$ with $d_{ij} > 0$ and $d_{ii} = 0$, find a permutation π of $\{1,2,\ldots,n\}$ such that $c(\pi)$, the cost of π is minimal, where $c(\pi) = d_{\pi_1\pi_2} + d_{\pi_2\pi_3} + \cdots + d_{\pi_{n-1}\pi_n} + d_{\pi_n\pi_1}$
 - TSP the language (take 1): $\{((d_{ij})_{1 \le i,j \le n}, B) : n \ge 2, B \ge 0$, there exists a permutation π such that $c(\pi) \le B\}$
 - TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs that have a (Hamiltonian) cycle that goes through all the vertices exactly once
 - Note: A cycle that uses all the edges exactly once is Eulerian; a graph G is
 Eulerian iff
 - There is a path between any two vertices that are not isolated, and
 - Every vertex has an in-degree equal to its out-degree

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph G = (V, E), find the maximal set $C \subseteq V$ such that $\forall v_i, v_i \in C : (v_i, v_i) \in E$ (C is a clique of G)
 - Clique, the language: $\{(G = (V, E), K) : K \ge 2 : \text{there exists a clique } C \text{ of } V \text{ such that } |C| \ge K\}$

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph G = (V, E), find the maximal set $C \subseteq V$ such that $\forall v_i, v_i \in C : (v_i, v_i) \in E$ (C is a clique of C)
 - Clique, the language: {(G = (V, E), K) : K ≥ 2 : there exists a clique C of V such that |C| ≥ K}
- SAT: Fix a set of variables $X = \{x_1, x_2, \dots, x_n\}$ and let $\overline{X} = \{\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}\}$
 - An element of $X \cup \overline{X}$ is called a literal
 - A formula (or set/conjunction of clauses) is $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_m$ where $\alpha_i = x_{a_1} \vee x_{a_2} \vee \cdots \vee x_{a_k}$, $1 \leq i \leq m$, and $x_{a_i} \in X \cup \overline{X}$
 - An interpretation (or truth assignment) is a function $I: X \to \{\top, \bot\}$
 - A formula F is satisfiable iff there exists an interpretation under which F evaluates to ⊤.
 - SAT = $\{F : F \text{ is satisfiable }\}$
- 2-SAT, 3-SAT are variants of SAT (with the number of literals in every clause restricted to a maximum of 2 and 3, respectively)

2-SAT

Theorem

2- $SAT \in \mathcal{P}$

- Algorithm $purge(F, x_i \in X)$: Erase from $F \overline{x_i}$, erase from F all the clauses that contain x_i
- Algorithm satisfy(F, X):
 - For every singleton clause x_i : Set $I(x_i) = \top$, purge (F, x_i)
 - ② For every singleton clause $\overline{x_i}$: Set $I(x_i) = \bot$, $purge(F, \overline{x_i})$
 - If we have an empty clause then report F as unsatisfiable and stop
 - Pick $x_i \in X$, set X to $X \setminus \{x_i\}$, and copy F into F'
 - \bigcirc Set $I(x_i) = \top$, purge (F, x_i)
 - If we have an empty clause, then

 - ② If we have an empty clause then report F as unsatisfiable and stop
 - Set F to F'
 - If $x = \emptyset$ then report F as satisfiable and stop, otherwise repeat from Step 4

REDUCTIONS, REVISITED

• The general idea of reductions:

- Reductions can be used in proofs by contradiction:
 - If L does not have property $\mathbb P$ and reduction τ from L to L' preserves $\mathbb P$
 - Then L' does not have \mathbb{P}
- Example: Turing reductions and undecidable problems

POLYNOMIAL REDUCTIONS

- A function f: Σ* → Σ* is polynomially computable iff there exists a
 polynomially time bounded, deterministic Turing machine that computes it
- Let $L_1, L_2 \in \Sigma^*$; the function $\tau : \Sigma^* \to \Sigma^*$ is a polynomial reduction if it is polynomially computable, and $\forall x \in \Sigma^* : x \in L_1$ iff $\tau(x) \in L_2$
- Polynomial reductions show that a problem is not harder to solve than another within a polynomial-time factor

Lemma

 L_1 is polynomially reducible to L_2 and $L_2 \in \mathcal{P}$ implies $L_1 \in \mathcal{P}$

Theorem

Polynomial reductions are closed under (functional) composition

Direct, constructive proof

$\mathcal{NP} ext{-}\mathsf{COMPLETE}$ PROBLEMS

- A problem L is \mathcal{NP} -hard iff for every language $L' \in \mathcal{NP}$ there exists a polynomial reduction from L' to L
- A problem *L* is \mathcal{NP} -complete iff *L* is \mathcal{NP} -hard and $L \in \mathcal{NP}$

Theorem

Let L be some \mathcal{NP} -complete problem; then $\mathcal{P} = \mathcal{NP}$ iff $L \in \mathcal{P}$

- \Rightarrow : *L* is \mathcal{NP} -complete, so $L \in \mathcal{NP}$; however, $\mathcal{P} = \mathcal{NP}$ and so $L \in \mathcal{P}$
- \Leftarrow : $L \in \mathcal{P}$, so L is decided by a polynomially time bounded deterministic machine M
 - For any $L' \in \mathcal{NP}$ we have a polynomial reduction τ from L to L', decided by a polynomially time bounded, deterministic machine M_{τ}
 - Then L' is decided by the deterministic, polynomially time bounded machine M_TM

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - at least one vertex is number j
 - 2 no vertex can be in two places at once
 - every vertex must be in the cycle
 - a place in the cycle can only have one vertex
 - **5** The permutation given by x_{ij} is a Hamiltonian cycle

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - ① at least one vertex is number $j \quad \forall \ 1 \leq j \leq n : x_{1i} \vee x_{2i} \vee \cdots \vee x_{ni}$
 - no vertex can be in two places at once
 - every vertex must be in the cycle
 - a place in the cycle can only have one vertex
 - **5** The permutation given by x_{ij} is a Hamiltonian cycle

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - ① at least one vertex is number $j \quad \forall \ 1 \leq j \leq n : x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$
 - ② no vertex can be in two places at once $\forall 1 \leq i, j, k \leq n, j \neq k : \overline{X_{ij}} \vee \overline{X_{ik}}$
 - every vertex must be in the cycle
 - a place in the cycle can only have one vertex
 - **5** The permutation given by x_{ij} is a Hamiltonian cycle

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - **1** at least one vertex is number $j \quad \forall \ 1 \leq j \leq n : x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$
 - ② no vertex can be in two places at once $\forall 1 \leq i, j, k \leq n, j \neq k : \overline{X_{ij}} \vee \overline{X_{ik}}$
 - **1** every vertex must be in the cycle $\forall 1 \leq i \leq n : x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$
 - a place in the cycle can only have one vertex
 - **5** The permutation given by x_{ij} is a Hamiltonian cycle

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - **1** at least one vertex is number $j \forall 1 \le j \le n : x_{1j} \lor x_{2j} \lor \cdots \lor x_{nj}$
 - ② no vertex can be in two places at once $\forall 1 \leq i, j, k \leq n, j \neq k : \overline{X_{ij}} \vee \overline{X_{ik}}$
 - **1** every vertex must be in the cycle $\forall 1 \leq i \leq n : x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$
 - **1** a place in the cycle can only have one vertex $\forall \ 1 \leq i, j, k \leq n, i \neq k : \overline{X_{ii}} \vee \overline{X_{ki}}$
 - **1** The permutation given by x_{ij} is a Hamiltonian cycle

- Reduction from Hamiltonian cycle to SAT
 - Graph G given as adjacency matrix: $G = V \times V$, $V = \{1, 2, ..., n\}$
 - G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
- Variables: x_{ij} , $1 \le i, j \le n$; $x_{ij} = \top$ iff vertex i is number j in the Hamiltonian cycle
- Clauses: need to specify that x_{ij} represent a permutation (or bijection) over V; need then to specify that all the vertices in the cycle are actually connected
 - ① at least one vertex is number $j \quad \forall \ 1 \leq j \leq n : x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$
 - ② no vertex can be in two places at once $\forall 1 \leq i, j, k \leq n, j \neq k : \overline{X_{ij}} \vee \overline{X_{ik}}$
 - **3** every vertex must be in the cycle $\forall 1 \leq i \leq n : x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$
 - **1** a place in the cycle can only have one vertex $\forall \ 1 \leq i, j, k \leq n, i \neq k : \overline{X_{ii}} \vee \overline{X_{ki}}$
 - **5** The permutation given by x_{ij} is a Hamiltonian cycle For all i and k such that $(i, k) \notin G$ and assuming that $x_{kn+1} = x_{k1}$, we add $\overline{x_{ij}} \vee \overline{x_{ki+1}}$

REDUCTION EXAMPLE (CONT'D)

- We have $O(n^3)$ clauses with at most O(n) literals each
- Each clause may depend on G and n but nothing else
- The whole set is clearly polynomially computable, as desired
- Remains to prove that G has a Hamiltonian cycle iff $\tau(G)$ is satisfiable
 - Suppose that some interpretation I satisfies $\tau(G)$
 - Then for each i exactly one $I(x_{ij})$ is \top and for each j exactly one $I(x_{ij})$ is \top (because of 1-4)
 - This goes both ways
 - if
- $\overline{x_{ii}} \vee \overline{x_{ki+1}}$ is true whenever $(i,j) \notin G$
- Whenever $i = \pi_j$ and $k = \pi_{j+1}$ we have $I(x_{ij}) = \top$ and $I(x_{kj+1}) = \top$
- Therefore the clause $\overline{x_{ij}} \vee \overline{x_{kj+1}}$ if false, so (i,k) must be an edge in G
- only if
 - Let π be a Hamiltonian cycle
 - We then set $I(x_{ii}) = \top$ iff $j = \pi_i$, which makes $\tau(G)$ true

$\mathcal{NP} ext{-}\mathsf{COMPLETENESS}$ THEORY IN A NUTSHELL

- Are there \mathcal{NP} -complete problems at all?
 - Yes, SAT is one (cf. Stephen Cook, 1971)
- \bullet The first is the hard one: we have to show that every problem in \mathcal{NP} reduces to our problem
- ullet Then in order to find other \mathcal{NP} -complete problems all we need to do is to find problems such that some problem already known to be \mathcal{NP} -complete reduces to them
 - This works because polynomial reductions are closed under composition = are transitive
- Then it is apparently easy to use the theorem stated earlier:

Let *L* be some \mathcal{NP} -complete problem; then $\mathcal{P} = \mathcal{NP}$ iff $L \in \mathcal{P}$

TILING KITCHEN FLOORS

- Tiling system: $\mathcal{D} = (D, d_0, H, V)$
 - D is a finite set of tiles
 - $d_0 \in D$ is the initial corner tile
 - $H, V \in D \times D$ are the horizontal and vertical tiling restrictions
- Tiling: $f: \mathbb{N}_s \times \mathbb{N}_s \to D$ such that
 - $f(0,0) = d_0$
 - $\forall 0 \le m < s, 0 \le n < s 1 : (f(m, n), f(m, n + 1)) \in V$
 - $\forall 0 \le m < s 1, 0 \le n < s : (f(m, n), f(m + 1, n)) \in H$
- The bounded tiling problem:
 - Given a tiling system \mathcal{D} , a positive integer s and an initial tiling $f_0: \mathbb{N}_s \to D$
 - Find whether there exists a tiling function f that extends f_0

Bounded tiling is \mathcal{NP} -complete

ullet We need to find reductions from all problems in \mathcal{NP} to bounded tiling

Bounded tiling is \mathcal{NP} -complete

- We need to find reductions from all problems in \mathcal{NP} to bounded tiling
 - \bullet The only thing in common to all the \mathcal{NP} problems is that each of them is decided by a nondeterministic, polynomially bounded Turing machine
 - We therefore find a reduction from an arbitrary such a machine to bounded tiling

Bounded tiling is \mathcal{NP} -complete

- We need to find reductions from all problems in \mathcal{NP} to bounded tiling
 - ullet The only thing in common to all the \mathcal{NP} problems is that each of them is decided by a nondeterministic, polynomially bounded Turing machine
 - We therefore find a reduction from an arbitrary such a machine to bounded tiling
- We find a tiling system such that each row in the tiling corresponds to one configuration of the given Turing machine

Lp

 $\forall (q, a, p, L) \in \Delta$:

Initial tiling:

- 11			 	(11)
#	W ₁	W 2	 $ W_n $	$(\boldsymbol{s}, \#)$

SAT IS \mathcal{NP} -COMPLETE

- \bullet SAT $\in \mathcal{NP}$
 - We nondeterministically guess an interpretation and we check that the interpretation satisfies the formula
 - Both of these take linear time
- **SAT** is \mathcal{NP} -hard
 - By reduction of bounded tiling to SAT
 - Consider variables x_{nmd} standing for "tile d is at position (n, m) in the tiling"
 - Construct clauses such that $x_{nmd} = \top$ iff f(m, n) = d
 - We first specify that we have a function:
 - each position has at least one tile: $\forall 0 \le m, n \le s : x_{mnd_1} \lor x_{mnd_2} \lor \cdots$
 - no more than one tile in a given position: $\forall \ 0 \le m, n \le s, d \ne d' : \overline{X_{mnd}} \lor \overline{X_{mnd'}}$
 - Then we specify the restrictions *H* and *V*:
 - $\bullet \ (d,d') \in D^2 \backslash H \Rightarrow \overline{x_{mnd}} \vee \overline{x_{m+1nd'}} \qquad (d,d') \in D^2 \backslash V \Rightarrow \overline{x_{mnd}} \vee \overline{x_{mn+1d'}}$
 - In fact 3-SAT is also \mathcal{NP} -complete

Proof of \mathcal{NP} -completeness

- To show that a problem is \mathcal{NP} -complete we need to show that
- The problem is in \mathcal{NP}
 - Construct a Turing machine, or find succinct certificates
 - Usually quite straightforward
- The problem is \mathcal{NP} -hard
 - Exhibit a polynomial reduction from a known \mathcal{NP} -complete problem
 - Reduction can happen from any problem discussed in class and also from any problem discussed in Sections 7.2 and 7.3 (take those problems as solved exercises)
 - Make sure that you are comfortable with this way of thinking! There are numerous solved exercises to make you comfortable

CS 455/555 (S. D. Bruda) Fall 2020

ullet 3-SAT is \mathcal{NP} -complete

- 3-SAT is NP-complete
 - Hint: any clause $x_1 \lor x_2 \lor \cdots x_n$ is logically equivalent with $(x_1 \lor x_2 \lor x_2') \land (\overline{x_2'} \lor x_3 \lor x_3') \land (\overline{x_3'} \lor x_4 \lor x_4') \land \cdots \land (\overline{x_{n-2}'} \lor x_{n-1} \lor x_n)$
- CLIQUE = $\{(G = (V, E), k) : k \ge 2 :$ there exists a clique C of $V, |C| = k\}$ Membership in \mathcal{NP} and 3-SAT being reducible to CLIQUE implies CLIQUE is \mathcal{NP} -complete

- 3-SAT is \mathcal{NP} -complete
 - Hint: any clause $x_1 \vee x_2 \vee \cdots \times x_n$ is logically equivalent with $(x_1 \vee x_2 \vee x_2') \wedge (\overline{x_2'} \vee x_3 \vee x_3') \wedge (\overline{x_3'} \vee x_4 \vee x_4') \wedge \cdots \wedge (\overline{x_{n-2}'} \vee x_{n-1} \vee x_n)$
- CLIQUE = $\{(G=(V,E),k): k\geqslant 2:$ there exists a clique C of $V,|C|=k\}$ Membership in \mathcal{NP} and 3-SAT being reducible to CLIQUE implies CLIQUE is \mathcal{NP} -complete
 - Start from $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$, construct G = (V, E)
 - Start with $V = \emptyset$ and $E = \emptyset$
 - For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
 - Add (v_i^r, v_j^s) to E whenever $r \neq s$ and l_i^r is not the negation of l_j^s $(l_i^r \text{ is and } l_j^s \text{ are consistent})$

- 3-SAT is \mathcal{NP} -complete
 - Hint: any clause $x_1 \lor x_2 \lor \cdots \lor x_n$ is logically equivalent with $(x_1 \lor x_2 \lor x_2') \land (\overline{x_2'} \lor x_3 \lor x_3') \land (\overline{x_3'} \lor x_4 \lor x_4') \land \cdots \land (\overline{x_{n-2}'} \lor x_{n-1} \lor x_n)$
- CLIQUE = $\{(G=(V,E),k): k\geqslant 2:$ there exists a clique C of $V,|C|=k\}$ Membership in \mathcal{NP} and 3-SAT being reducible to CLIQUE implies CLIQUE is \mathcal{NP} -complete
 - Start from $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$, construct G = (V, E)
 - Start with $V = \emptyset$ and $E = \emptyset$
 - For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
 - Add (v_i^r, v_j^s) to E whenever r ≠ s and l_i^r is not the negation of l_j^s (l_i^r is and l_j^s are consistent)
 - Suppose that ϕ is satisfiable; then:
 - The interpretation that makes ϕ true makes at least one literal I_i^r per clause true
 - The vertex v_i^r is connected to all the other vertices v_j^s that make the other clauses true (these are all consistent with each other)
 - So the vertices v^r form a clique (of size k)

- 3-SAT is \mathcal{NP} -complete
 - Hint: any clause $x_1 \vee x_2 \vee \cdots \times x_n$ is logically equivalent with $(x_1 \vee x_2 \vee x_2') \wedge (\overline{x_2'} \vee x_3 \vee x_3') \wedge (\overline{x_3'} \vee x_4 \vee x_4') \wedge \cdots \wedge (\overline{x_{n-2}'} \vee x_{n-1} \vee x_n)$
- CLIQUE = $\{(G = (V, E), k) : k \ge 2 :$ there exists a clique C of V, $|C| = k\}$ Membership in \mathcal{NP} and 3-SAT being reducible to CLIQUE implies CLIQUE is \mathcal{NP} -complete
 - Start from $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$, construct G = (V, E)
 - Start with $V = \emptyset$ and $E = \emptyset$
 - For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
 - Add (v_i^r, v_j^s) to E whenever r ≠ s and l_i^r is not the negation of l_j^s (l_i^r is and l_j^s are consistent)
 - Suppose that ϕ is satisfiable; then:
 - The interpretation that makes ϕ true makes at least one literal I_i^r per clause true
 - The vertex v_i^r is connected to all the other vertices v_j^s that make the other clauses true (these are all consistent with each other)
 - So the vertices v_i^r form a clique (of size k)
 - Suppose that *G* has a clique *C* of size *k*; then:
 - C contains exactly one vertex per clause
 - Assigning \top to every literal I_i^r for which $v_i^r \in C$ is possible (all are consistent with each other)
 - The assignment makes ϕ true so ϕ is satisfiable

Vertex cover

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = $\{(G = (V, E), k) : G \text{ has a vertex cover of size } k\}$ Membership in \mathcal{NP} and CLIQUE being reducible to VERTEX-COVER implies VERTEX-COVER is \mathcal{NP} -complete

Vertex cover

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = $\{(G = (V, E), k) : G \text{ has a vertex cover of size } k\}$ Membership in \mathcal{NP} and CLIQUE being reducible to VERTEX-COVER implies VERTEX-COVER is \mathcal{NP} -complete
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of G)
 - Then $(G, k) \in CLIQUE$ iff $(\overline{G}, |V| k) \in VERTEX-COVER$

VERTEX COVER

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = $\{(G = (V, E), k) : G \text{ has a vertex cover of size } k\}$ Membership in \mathcal{NP} and CLIQUE being reducible to VERTEX-COVER implies VERTEX-COVER is \mathcal{NP} -complete
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of G)
 - Then $(G, k) \in CLIQUE$ iff $(\overline{G}, |V| k) \in VERTEX-COVER$
 - Suppose that G has a clique C, |C| = k; then:
 - $(u, v) \notin E$ means that u and v cannot be both in C
 - That is, $V \setminus C$ covers every edge $(u, v) \notin E$ that is, every vertex $(u, v) \in \overline{E}$
 - Therefore $V \setminus C$ is a vertex cover for \overline{G} (of size |V| k)

VERTEX COVER

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = $\{(G = (V, E), k) : G \text{ has a vertex cover of size } k\}$ Membership in \mathcal{NP} and CLIQUE being reducible to VERTEX-COVER implies VERTEX-COVER is \mathcal{NP} -complete
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of G)
 - Then $(G, k) \in CLIQUE$ iff $(\overline{G}, |V| k) \in VERTEX-COVER$
 - Suppose that G has a clique C, |C| = k; then:
 - $(u, v) \notin E$ means that u and v cannot be both in C
 - That is, $V \setminus C$ covers every edge $(u, v) \notin E$ that is, every vertex $(u, v) \in \overline{E}$
 - Therefore $V \setminus C$ is a vertex cover for \overline{G} (of size |V| k)
 - Suppose that \overline{G} has a vertex cover V' with |V'| = |V| k; then:
 - $(u, v) \in \overline{E} \Rightarrow u \in V' \lor v \in V'$
 - Contrapositive: $u \notin V' \land v \notin V' \Rightarrow (u, v) \notin \overline{E}$
 - That is, $u \in V \setminus V' \land v \in V \setminus V' \Rightarrow (u, v) \in E$
 - So $V \setminus V'$ is a clique of G (or size k)

Fall 2020

Other issues related to ${\mathcal P}$ and ${\mathcal N}{\mathcal P}$

- co- \mathcal{NP} is the complement of \mathcal{NP} ($P \in \text{co-}\mathcal{NP}$ iff $P \in \mathcal{NP}$)
 - Thought to be different from \mathcal{NP}
 - $\mathcal{P} \subset \text{co-}\mathcal{NP}$. $\mathcal{P} \subset \mathcal{NP}$
 - If $P \in \text{co-}\mathcal{NP}$, $P \in \mathcal{NP}$, and $P \in \mathcal{P}$ then P is suspected not to be \mathcal{NP} -complete
 - Example: the language of composite numbers (aka the integer factorization problem)
 - in \mathcal{NP} and also in co- \mathcal{NP}
 - suspected outside \mathcal{P}
 - suspected outside \mathcal{NP} -complete
- co- \mathcal{NP} -complete problems also definable
 - integer factorization also suspected outside co- \mathcal{NP} -complete

FURTHER COMPLEXITY THEORY

Several complexity classes:

$\mathcal{L} \subseteq \mathcal{NL} \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{PSPACE} = \mathcal{NPSPACE}$

- \bullet $\, \mathcal{L}$ stands for logarithmic space and \mathcal{NL} for nondeterministic logarithmic space
- The only thing known: $\mathcal{NL} \neq \mathcal{PSPACE}$
 - So at least one of the inclusions in between must be strict
 - But we do not know which ones are strict or not
- Each inclusion has its own completeness theory, so we have \mathcal{P} -complete and \mathcal{PSPACE} -complete problems
 - The reduction for each completeness theory comes from the inner class
 - Indeed, if we go higher then all problems in the given class become complete!
 - That is, \mathcal{P} -complete problems are defined in terms of \mathcal{NL} reductions, whereas \mathcal{PSPACE} -complete problems are defined in terms of \mathcal{NP} reductions