
CS 455/555: Context-free languages

Stefan D. Bruda

Fall 2020

GRAMMARS

A grammar is a tuple G = (V ,Σ,R,S), where
V is an alphabet; Σ ⊆ V is the alphabet of terminals

V \ Σ called by contrast nonterminals

S ∈ V \ Σ is the axiom (or the start symbol)
R ⊆ V ∗(V \ Σ)V ∗ × V ∗ is the set of (rewriting) rules or productions

Common ways of expressing (α, β) ∈ R for a grammar G:
α→G β (or just α→ β), α→ β ∈ R

Context-free grammar: a grammar with R ⊆ (V \ Σ)× V ∗

(left) regular grammar: R ⊆ (V \ Σ)× (Σ(V \ Σ) ∪ {ε})
u ⇒G v iff ∃ x , y ∈ V ∗ : ∃A ∈ V \ Σ : u = xAy , v = xv ′y , A→G v ′

⇒∗G is the reflexive and transitive closure of⇒G (derivation)
The language generated by grammar G: L(G) = {w ∈ Σ∗ : S ⇒∗G w}

CS 455/555 (S. D. Bruda) Fall 2020 1 / 11

PARSE TREES

Tree with labelled nodes
Yield: concatenation of leaves in inorder
Definition:

1 For every a ∈ Σ the following is a parse tree (with yield a): a

2 For every A→ ε the following is a parse tree (with yield ε): A

ε

3 If the following are parse trees (with yields y1, y2, . . . , yn, respectively):

n1
A

2
...T

1
T

2
T

n

AA

and A→ A1A2 . . .An, then the following is a parse tree (with yield y1y2 . . . yn):
A

1
A

2
...T

1
T

2
T

n

A
n

A

CS 455/555 (S. D. Bruda) Fall 2020 2 / 11

DERIVATIONS AND PARSE TREES

Every derivation starting from some nonterminal has an associated parse
tree (rooted at the starting nonterminal)
Two derivations are similar iff only the order of rule application varies

Can obtain one derivation from the other by repeatedly flipping consecutive
rule applications
Two similar derivations have identical parse trees

Can always choose a “standard” derivations: leftmost (A
L
⇒∗ w) or rightmost

(A
R
⇒∗ w)

Theorem
The following four statements are equivalent:
◦ There exists a parse tree with root A and yield w

◦ A⇒∗ w ◦ A
L
⇒∗ w ◦ A

R
⇒∗ w

Ambiguity of a grammar: there exists a string that has two derivations
that are not similar (i.e., two derivations with diferent parse trees)

Can be inherent or not

CS 455/555 (S. D. Bruda) Fall 2020 3 / 11

CONTEXT-FREE AND REGULAR LANGUAGES

Languages generated by context-free grammars are called context-free

Theorem
Exactly all the regular languages are generated by regular grammars (which
are all context-free grammars)

Let M = (K ,Σ,∆, s,F) be some finite automaton
We construct the grammar G = (K ∪ Σ,Σ, s,R) with

R = {q → ap : (q, a, p) ∈ ∆} ∪ {q → ε : q ∈ F}

Corollary
All regular languages are context-free

However, there are more context-free than regular languages

S → aSb S → ε

CS 455/555 (S. D. Bruda) Fall 2020 4 / 11

PUSHDOWN AUTOMATA
M = (K ,Σ, Γ,∆, s,F)

K , Σ, s, F as before (for finite
automata)
Γ is the stack alphabet
∆ ⊆ {(K ×(Σ∪{ε})×Γ∗)×(K ×Γ∗)}
Transition:

((q, a, γ), (q′, γ′))

with a the current input symbol (or ε),
γ the old stack head, and γ′ the
replacement head S

to
ra

g
e

1
2

3

4
...

... ...Input

(s
ta

ck
)

Configuration: a member of K × Σ∗ × Γ∗

(q,w ,u) `M (q′,w ′,u′) iff
∃ ((q,a, γ), (q′, γ′)) ∈ ∆ : w = aw ′, u = γx , u′ = γ′x for some x ∈ Γ∗

M accepts w iff (s,w , ε) `∗M (f , ε, ε) for some f ∈ F
The language accepted by M is

L(M) = {w ∈ Σ∗ : (s,w , ε) `∗M (f , ε, ε) for some f ∈ F}

CS 455/555 (S. D. Bruda) Fall 2020 5 / 11

PUSHDOWN AUTOMATA AND CF LANGUAGES

Theorem
Pushdown automata accept exactly all the context-free languages

Construct a finite automaton M = (K ,Σ, Γ,∆, s,F) out of a grammar
G = (V ,Σ,S,R) and the other way around
⊇

Γ = V , K = {p, q}, s = p, F = {q}
∆ = {((p, ε, ε), (q,S))} ∪ {((q, ε,A), (q, α)) : A→ α ∈ R}
∪ {((q, a, a), (q, ε)) : a ∈ Σ}

Complete proof on page 138

⊆
We work with simplified automata: ((q, a, γ), (q′, γ′)) ∈ ∆⇒ γ ∈ Γ ∧ |γ′| ≤ 2
for any q 6= s
Given a normal automaton it is easy to construct the simplified automaton
M ′ = (K ′,Σ, Γ ∪ {Z},∆′, s′, {f ′}), with K ′ = K] {s′, f ′}, Z 6∈ Γ and ∆′

contains for a starter the transitions ((s′, ε, ε), (s,Z)) and ((f , ε,Z), (f ′, ε)) for
any f ∈ F

CS 455/555 (S. D. Bruda) Fall 2020 6 / 11

PDA AND CF LANGUAGES (CONT’D)

⊆ (cont’d)
We add then to ∆′ all the transitions in ∆ that are already in the desired form
For any ((q, a, γ), (q′, γ′)) ∈ ∆ such that γ = γ1γ2 . . . γn for some n > 1 we
add in ∆′:

((q, ε, γ1), (q1, ε)) ((q1, ε, γ2), (q2, ε)) . . .

((qn−2, ε, γn−1), (qn−1, ε)) ((qn−1, a, γn), (q′, γ′))

For any ((q, a, γ), (q′, γ′)) ∈ ∆ ∪∆′ such that γ′ = γ1γ2 . . . γm for some
m > 2 we add/replace in ∆′:

((q, a, γ), (q1, γm)) ((q1, ε, ε), (q2, γm−1)) . . .

((qm−2, ε, ε), (qm−1, γ2)) ((qn−1, ε, ε), (q′, γ1))

For any ((q, a, ε), (q′, γ)) ∈ ∆ ∪∆′ we add/replace in ∆′:

((q, a,A), (q′, γA)) for all A ∈ Γ ∪ {Z}

CS 455/555 (S. D. Bruda) Fall 2020 7 / 11

PDA AND CF LANGUAGES (CONT’D)

⊆ (cont’d)
Now we take V = {S}] {〈q,A, p〉 : q, p ∈ K ′,A ∈ Γ ∪ {ε,Z}}
Every nonterminal 〈q,A, p〉 corresponds to the input consumed by the
automaton starting from state q with A at the top of the stack and ending in
state p
Then R is constructed as follows:

S → 〈s,Z , f ′〉
For each ((q, a,B), (r ,C)) ∈ ∆, B,C ∈ Γ we add 〈q,B, p〉 → a〈r ,C, p〉 for each
p ∈ K ′
For each ((q, a,B), (r ,CC′)) ∈ ∆, B,C,C′ ∈ Γ we add
〈q,B, p′〉 → a〈r ,C, p〉〈p,C′, p′〉 for each combination p, p′ ∈ K ′
For each q ∈ K ′ we add 〈q, ε, q〉 → ε

CS 455/555 (S. D. Bruda) Fall 2020 8 / 11

CLOSURE PROPERTIES

Consider two grammars with axioms S1 and S2; construct a grammar
with axiom S
Context-free languages are closed under

Union: Add rules S → S1 and S → S2

Concatenation: Add rule S → S1S2

KLeene star: Add rules S → ε and S → SS1

Context-free languages are closed under intersection with regular
languages

M1 = (K1,Σ, Γ1,∆1, s1,F1) L(M1) = L1

M2 = (K2,Σ, δ2, s2,F2) L(M)2 = L2

Construct M = (K ,Σ, Γ,∆, s,F) L(M) = L1 ∩ L2

K = K1 × K2, Γ = Γ1, s = (s1, s2), F = F1 × F2

((q1, a, γ), (p, γ′)) ∈ ∆1 ⇒ (((q1, q2), a, γ), ((p, δ2(q2, a)), γ′)) ∈ ∆

((q1, ε, γ), (p, γ′)) ∈ ∆1 ⇒ (((q1, q2), ε, γ), ((p, q2), γ′)) ∈ ∆

CS 455/555 (S. D. Bruda) Fall 2020 9 / 11

PUMPING CONTEXT-FREE LANGUAGES

Let Φ(G) be the maximum fanout (branching factor) of any node in any
parse tree constructed based on grammar G
A parse tree of height h has a yield of size no more than Φ(G)h

Theorem (pumping context-free languages)
For any w ∈ L(G) such that |w | ≥ Φ(G)|V−Σ| we can write w as uvxyz such
that vy 6= ε and uvnxynz ∈ L(G) for any n ≥ 0

zx y

A

A

u v

CS 455/555 (S. D. Bruda) Fall 2020 10 / 11

PUMPING CONTEXT-FREE LANGUAGES (CONT’D)

Some interesting non-context-free languages:
{anbncn : n ≥ 0}
{w ∈ {a,b, c}∗ : |w |a = |w |b = |w |c}
{an : n is prime}

Corollary
Context-free languages are not closed under intersection and
complementation

Indeed, {anbncn : n ≥ 0} = {anbncm : n,m ≥ 0} ∩ {ambncn : n,m ≥ 0}
That {anbncm : n,m ≥ 0} is context free can be shown by constructing a
grammar/automaton or by using closure properties

Then {w ∈ {a,b, c}∗ : |w |a = |w |b = |w |c} can be shown
non-context-free using closure properties

CS 455/555 (S. D. Bruda) Fall 2020 11 / 11

