

CS 455/555: Context-free languages

Stefan D. Bruda

Fall 2020

- A grammar is a tuple $G = (V, \Sigma, R, S)$, where
 - V is an alphabet; $\Sigma \subset V$ is the alphabet of terminals
 - V \ Σ called by contrast nonterminals
 - $S \in V \setminus \Sigma$ is the axiom (or the start symbol)
 - $R \subseteq V^*(V \setminus \Sigma)V^* \times V^*$ is the set of (rewriting) rules or productions
 - Common ways of expressing $(\alpha, \beta) \in R$ for a grammar G: $\alpha \to_{\mathcal{G}} \beta$ (or just $\alpha \to \beta$), $\alpha \to \beta \in \mathcal{R}$
- Context-free grammar: a grammar with $R \subset (V \setminus \Sigma) \times V^*$
 - (left) regular grammar: $R \subseteq (V \setminus \Sigma) \times (\Sigma(V \setminus \Sigma) \cup \{\varepsilon\})$
- $u \Rightarrow_G v$ iff $\exists x, y \in V^* : \exists A \in V \setminus \Sigma : u = xAy, v = xv'y, A \rightarrow_G v'$
- $\bullet \Rightarrow_G^*$ is the reflexive and transitive closure of \Rightarrow_G (derivation)
- The language generated by grammar $G: \mathcal{L}(G) = \{w \in \Sigma^* : S \Rightarrow_G^* w\}$

Parse trees

- Tree with labelled nodes
- Yield: concatenation of leaves in inorder
- Definition:
 - **1** For every $a \in \Sigma$ the following is a parse tree (with yield a):
- 2 For every $A \to \varepsilon$ the following is a parse tree (with yield ε):

If the following are parse trees (with yields y_1, y_2, \ldots, y_n , respectively):

and $A \to A_1 A_2 \dots A_n$, then the following is a parse tree (with yield $y_1 y_2 \dots y_n$):

CS 455/555 (S. D. Bruda)

DERIVATIONS AND PARSE TREES

- Every derivation starting from some nonterminal has an associated parse tree (rooted at the starting nonterminal)
- Two derivations are similar iff only the order of rule application varies
 - Can obtain one derivation from the other by repeatedly flipping consecutive rule applications
 - Two similar derivations have identical parse trees
 - Can always choose a "standard" derivations: leftmost $(A \Rightarrow^* w)$ or rightmost $(A \Rightarrow^* w)$

Theorem

The following four statements are equivalent:

- There exists a parse tree with root A and yield w
- $\circ A \Rightarrow^* W$
- $\circ A \Rightarrow^* W$
- Ambiguity of a grammar: there exists a string that has two derivations that are not similar (i.e., two derivations with different parse trees)
 - Can be inherent or not

CONTEXT-FREE AND REGULAR LANGUAGES

• $M = (K, \Sigma, \Gamma, \Delta, s, F)$

PUSHDOWN AUTOMATA

- K, Σ, s, F as before (for finite automata)
 - Γ is the stack alphabet
 - $\Delta \subseteq \{(K \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)\}$
 - Transition:

$$((q, a, \gamma), (q', \gamma'))$$

with a the current input symbol (or ε), γ the old stack head, and γ' the replacement head

- Configuration: a member of $K \times \Sigma^* \times \Gamma^*$
- $(q, w, u) \vdash_M (q', w', u')$ iff $\exists ((q, a, \gamma), (q', \gamma')) \in \Delta : w = aw', u = \gamma x, u' = \gamma' x \text{ for some } x \in \Gamma^*$
- *M* accepts *w* iff $(s, w, \varepsilon) \vdash_{M}^{*} (f, \varepsilon, \varepsilon)$ for some $f \in F$
- The language accepted by M is

$$\mathcal{L}(M) = \{ w \in \Sigma^* : (s, w, \varepsilon) \vdash_M^* (f, \varepsilon, \varepsilon) \text{ for some } f \in F \}$$

Theorem

Exactly all the regular languages are generated by regular grammars (which are all context-free grammars)

Languages generated by context-free grammars are called context-free

- Let $M = (K, \Sigma, \Delta, s, F)$ be some finite automaton
- We construct the grammar $G = (K \cup \Sigma, \Sigma, s, R)$ with

$$R = \{q \to ap : (q, a, p) \in \Delta\} \cup \{q \to \varepsilon : q \in F\}$$

Corollary

All regular languages are context-free

However, there are more context-free than regular languages

$$S o aSb$$
 $S o arepsilon$

CS 455/555 (S. D. Bruda)

Fall 202

20 4/1

CS 455/555 (S. D. Bruda)

5/11

PUSHDOWN AUTOMATA AND CF LANGUAGES

Theorem

Pushdown automata accept exactly all the context-free languages

- Construct a finite automaton $M = (K, \Sigma, \Gamma, \Delta, s, F)$ out of a grammar $G = (V, \Sigma, S, R)$ and the other way around
- ⊃
 - $\Gamma = V, K = \{p, q\}, s = p, F = \{q\}$
 - $\Delta = \{((p, \varepsilon, \varepsilon), (q, S))\} \cup \{((q, \varepsilon, A), (q, \alpha)) : A \to \alpha \in R\}$ $\cup \{((q, a, a), (q, \varepsilon)) : a \in \Sigma\}$
 - Complete proof on page 138
- ⊆
 - We work with simplified automata: $((q, a, \gamma), (q', \gamma')) \in \Delta \Rightarrow \gamma \in \Gamma \land |\gamma'| \le 2$ for any $q \ne s$
 - Given a normal automaton it is easy to construct the simplified automaton $M' = (K', \Sigma, \Gamma \cup \{Z\}, \Delta', s', \{f'\})$, with $K' = K \uplus \{s', f'\}, Z \not\in \Gamma$ and Δ' contains for a starter the transitions $((s', \varepsilon, \varepsilon), (s, Z))$ and $((f, \varepsilon, Z), (f', \varepsilon))$ for any $f \in F$

PDA and CF Languages (CONT'D)

- - \bullet We add then to Δ' all the transitions in Δ that are already in the desired form
 - For any $((q, a, \gamma), (q', \gamma')) \in \Delta$ such that $\gamma = \gamma_1 \gamma_2 \dots \gamma_n$ for some n > 1 we add in Δ' :

$$((q,\varepsilon,\gamma_1),(q_1,\varepsilon)) \quad ((q_1,\varepsilon,\gamma_2),(q_2,\varepsilon)) \quad \dots \\ ((q_{n-2},\varepsilon,\gamma_{n-1}),(q_{n-1},\varepsilon)) \quad ((q_{n-1},a,\gamma_n),(q',\gamma'))$$

• For any $((q, a, \gamma), (q', \gamma')) \in \Delta \cup \Delta'$ such that $\gamma' = \gamma_1 \gamma_2 \dots \gamma_m$ for some m > 2 we add/replace in Δ' :

$$((q, a, \gamma), (q_1, \gamma_m)) \quad ((q_1, \varepsilon, \varepsilon), (q_2, \gamma_{m-1})) \quad \dots \\ ((q_{m-2}, \varepsilon, \varepsilon), (q_{m-1}, \gamma_2)) \quad ((q_{n-1}, \varepsilon, \varepsilon), (q', \gamma_1))$$

• For any $((q, a, \varepsilon), (q', \gamma)) \in \Delta \cup \Delta'$ we add/replace in Δ' :

$$((q, a, A), (q', \gamma A))$$
 for all $A \in \Gamma \cup \{Z\}$

CLOSURE PROPERTIES

- $\bullet \subseteq (cont'd)$
 - Now we take $V = \{S\} \uplus \{\langle q, A, p \rangle : q, p \in K', A \in \Gamma \cup \{\varepsilon, Z\}\}$
 - Every nonterminal $\langle q, A, p \rangle$ corresponds to the input consumed by the automaton starting from state q with A at the top of the stack and ending in state p
 - Then R is constructed as follows:
 - $S \rightarrow \langle s, Z, f' \rangle$
 - For each $((q, a, B), (r, C)) \in \Delta$, $B, C \in \Gamma$ we add $\langle q, B, p \rangle \rightarrow a \langle r, C, p \rangle$ for each $p \in K'$
 - For each $((q, a, B), (r, CC')) \in \Delta$, $B, C, C' \in \Gamma$ we add $\langle q, B, p' \rangle \rightarrow a \langle r, C, p \rangle \langle p, C', p' \rangle$ for each combination $p, p' \in K'$
 - For each $q \in K'$ we add $\langle q, \varepsilon, q \rangle \to \varepsilon$

- Consider two grammars with axioms S₁ and S₂; construct a grammar with axiom S
- Context-free languages are closed under
 - Union: Add rules $S \rightarrow S_1$ and $S \rightarrow S_2$
 - Concatenation: Add rule $S \rightarrow S_1 S_2$
 - KLeene star: Add rules $S \to \varepsilon$ and $S \to SS_1$
- Context-free languages are closed under intersection with regular languages

•
$$M_1 = (K_1, \Sigma, \Gamma_1, \Delta_1, s_1, F_1)$$
 $\mathcal{L}(M_1) = L_1$

- $M_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$ $\mathcal{L}(M)_2 = L_2$
- Construct $M = (K, \Sigma, \Gamma, \Delta, s, F)$ $\mathcal{L}(M) = L_1 \cap L_2$
- $K = K_1 \times K_2$, $\Gamma = \Gamma_1$, $s = (s_1, s_2)$, $F = F_1 \times F_2$

$$((q_1, a, \gamma), (p, \gamma')) \in \Delta_1 \quad \Rightarrow \quad (((q_1, q_2), a, \gamma), ((p, \delta_2(q_2, a)), \gamma')) \in \Delta$$

$$((q_1, \varepsilon, \gamma), (p, \gamma')) \in \Delta_1 \quad \Rightarrow \quad (((q_1, q_2), \varepsilon, \gamma), ((p, q_2), \gamma')) \in \Delta$$

CS 455/555 (S. D. Bruda)

Fall 202

8 / 11

OS 455/555 (S. D. Bru

Fall 2020

9/11

PUMPING CONTEXT-FREE LANGUAGES

- Let $\Phi(G)$ be the maximum fanout (branching factor) of any node in any parse tree constructed based on grammar G
- A parse tree of height h has a yield of size no more than $\Phi(G)^h$

Theorem (pumping context-free languages)

For any $w \in \mathcal{L}(G)$ such that $|w| \ge \Phi(G)^{|V-\Sigma|}$ we can write w as uvxyz such that $vy \ne \varepsilon$ and $uv^n xy^n z \in \mathcal{L}(G)$ for any $n \ge 0$

PUMPING CONTEXT-FREE LANGUAGES (CONT'D)

Some interesting non-context-free languages:

$${a^nb^nc^n : n \ge 0}$$

 ${w \in {a, b, c}^* : |w|_a = |w|_b = |w|_c}$
 ${a^n : n \text{ is prime}}$

Corollary

Context-free languages are not closed under intersection and complementation

- Indeed, $\{a^nb^nc^n : n \ge 0\} = \{a^nb^nc^m : n, m \ge 0\} \cap \{a^mb^nc^n : n, m \ge 0\}$
- That $\{a^nb^nc^m:n,m\geq 0\}$ is context free can be shown by constructing a grammar/automaton or by using closure properties
- Then $\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$ can be shown non-context-free using closure properties

CS 455/555 (S. D. Bruda) Fall 2020 10 / 11 CS 455/555 (S. D. Bruda) Fall 2020 11 / 11