TURING MACHINES

@ The most general kind of automaton [input
@ Has access to a general form of storage

@ In fact storage and input are put together
on a single, infinite tape

@ The machine can move the head in any

CS 455/555: Turing machines

Storage

direction
e Formally, M = (K,%,4,s,H)
Stefan D. Bruda @ K,Y asbefore;», #e¥;L,R¢ X

e _, <, — also common instead of #, L, R
@ H < K (halting states)
Fall 2020 o often H = {h}; more convenient that h ¢ K
@ 0:(K\H) xX — K x (Xu{L,R})such thatforall ge K\H:
@ 4(q,») = (p,b) implies b= R
e §(g,a) = (p,b) implies b # »
@ Configuration: K x ©* x (Z*(X\{#}) u {e})
o Configuration (g, wa, w') commonly written as (q, waw’)

CS 455/555 (S. D. Bruda) Fall 2020 1/10

TURING MACHINES (CONT’D) -l COMPOSITIONAL NOTATION FOR TURING MACHINES =

@ Basic machines: a: VbeX:i(s,b)=(ha)
L: VbeX:i(s,b)=(hL) R: VbeX:i(s,b)=(hR)

@ Yields in one step: (g1, wiaiu1) Fum (Ge, Waasp) iff 6(qy1, a1) = (e, b) for @ Combining machines:
some be ¥ u {L, R} and either Mo
@ beEX, Wy = Wo, Uy = Ub, & = b, 2
e b=L, w = woap, 4
Q@ U =auifa; ##oru #¢ M,
@ up=cifa; =#oru =e¢, a
e b=R,w = may, h
0 U =apifay ## Ms
. Shi=lp=cla =4 - M; halts and then either My or Mj start, depending on whether a is read
@ Yields: -}, the reflexive and transitive closure of -y (or not) by the head when M; halts
@ Yields in nsteps: Co tf; Cpiff Co t=m C1 =p -+ =m Cp1 =m Cn @ Supplementary, handy notations:
e M — N or just MN for M followed immediately by N
o M5 M,

o R, for R “©x; Ry for R “Ox; similar for Ly, Ly

CS 455/555 (S. D. Bruda) Fall 2020 2/10 CS 455/555 (S. D. Bruda) Fall 2020 3/10

SAMPLE MACHINES -l RECURSIVE LANGUAGES AND FUNCTIONS

(s.#) = (@1 @ Two variants of accepting a language: we always halt and produce a
((Q2, #)) B ((qa, 73) positive or negative answer, or we either halt or not halt

(q;; No— (Ziz L) More concisely: @ Recursive languages: Languages decided by Turing machines

(s, #) = (qa)) > L#L;IR; o two halti.ng states, one acc?pting the other rejecting or

(qu,)) = (qaR) o one halting state, writes “Y” or “N” on the tape

(G #) = (h#) e decides = always halts

@ Recursive functions:

@ One halting state, output is what is left on the tape
o M(w) = output of M on input w (defined only when M halts)

A copy machine: TM accepting {a’b"c" : n > 0}: o f:¥* > YT*isrecursiveiff IM: VY we £* : M(w) = f(w)
@ A Turing machine can also compute numerical functions using an
m encoding:
f/——ﬁ NS dL dL %~ 4r oweput{0,1,;}<;ZandthenMcomputesf:]Nk—>]Niff

>L#R Hfz;#R#R#aL#L#"l #\ / ? M(W1 Wo; - Wk) = f(W1,W2,...,Wk) for all

Wi W wh e {0} 0 {11401}

R, N]

CS 455/555 (S. D. Bruda) Fall 2020 4/10 CS 455/555 (S. D. Bruda) Fall 2020 5/10

RECURSIVELY ENUMERABLE LANGUAGES - l| EXTENSION OF TURING MAGHINES

@ Multiple tapes (natural; actual definition on p. 201)
§: (K\H) x IF - K x (£ u {L, R})¥

@ M semidecides L € X* whenever M halts on input w iff w € L for all o We put all the tapes as tracks on a single tape

weX* [0 o2 [oa [oa o5 [# o [y [og [og [og
. . = > #
@ Recursively enumerable languages include exactly all the languages IR er R

semidecided by Turing machines

. . . - rati
o Any recursive language is recursively enumerable @ On every move we must scan the whole non-blank tape = quadratic

N slowdown
o M’ = M — N O semidecides the language decided by M @ Two-way infinite tape
@ Recursive languages are closed under complementation o We pick a point and we fold the tape at that point into a two-track tape

o We just flip the accepting and rejecting state (or the writing of Y and N) o Every state g is replaced by two states g' and g*

e g' behaves like the original g and operates on the upper track

@ g behaves like the original except that it reverses the directions of
movement (and operates on the lower track)

e Constant slowdown

CS 455/555 (S. D. Bruda) Fall 2020 6/10 CS 455/555 (S. D. Bruda) Fall 2020 7/10

EXAMPLE OF NONDETERMINISTIC COMPUTATION:

EXTENSION OF TURING MACHINES (CONT’D)

a%»
COMPOSITE NUMBERS N

Nondeterministic Turing machine: Same definition except that we have a
transition relation A < (K\H) x £ x K x (X u{L, R})

Configuration, -, etc. identical, but now a configuration can yield in one
step more than one configuration two tapes:

® M accepts wiff (s, #Wﬁ) = (h,uav) for some u,veX*, aeX @ First tape contains input x (a binary number)

o We have one terminating computation (others may be non-terminating) @ Guess on the second tape a number p < x and again a number g < x
M semidecides a language L whenever M accepts w iff w e L #
M decides L iff

@ For some finite N (depending on M and w) there exists no configuration C .

such that (s, #w#) -4 C (M always halts) Ly PRIR?
Q we Liff (s, #w#) j; (h,uav) for some u,v € £*, a€ ¥ (some accepting

computation, others may be rejecting)

@ Language: {x € {0} U {1}{0,1}* : 3p,qe {1}{0,1}{0,1}* : x = p x g}
@ Decided by a very simple and fast nondeterministic Turing machine with

1 . *
° g/pl)glci):spmes Fif YweX: (s, #Wﬁ) = (B, #f(w)ﬁ)) and ltem 1 above © Multiply p and g, compare the result with x, accept iff they are equal
CS 455/555 (S. D. Bruda) Fall 2020 8/10 CS 455/555 (S. D. Bruda) Fall 2020 9/10

DETERMINISM VERSUS NONDETERMINISM

Theorem: If a nondeterministic Turing machine M decides/semidecides L or
computes f then there exists a deterministic Turing machine M’ that does the
same thing
@ Crux: LetCHpy Ci, Ctn Co, ..., CHpm Cp. Is there an upper bound for
n?
o Sure:n<r=IK|x(|X]+2)
@ We first construct a machine M, that receives the input and (on a
different tape) a path description iz . .. ik for some k, with 1 < jj <r
o My carries on k steps of the computation of M along the path given; it is
deterministic
@ Then M’ will be a 3-tape machine; tape 1 contains input w and remains
unchanged, tapes 2 and 3 are initially empty

@ M’ then generate the next path description on tape 3 in lexicographic order
@ Then M’ copies w on tape 2 and launches My
@ If My is successful, then M’ reports success; otherwise repeat from Step 1

@ Exponential slowdown

CS 455/555 (S. D. Bruda) Fall 2020 10/10

