
The client-server model

Stefan D. Bruda

CS 464/564, Fall 2023



WHY CLIENT-SERVER APPLICATIONS

TCP/IP provides peer-to-peer
communication.
We launch two programs and want
them to communicate with each other

Chances are, we will not be able to
convince them to meet

So we split responsibilities:
One party (the server) must start
execution and wait indefinitely for
incoming requests
So the other party (the client) will
simply connect, knowing that
somebody at the other end will listen

This also simplifies the TCP/IP
mechanisms

Launch

Initiate

communication

Terminate

No program

running!!

Launch

Initiate

communication

Terminate

No program

running!!

NetProgram 1 Program 2

T
im

e

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 1 / 5



WHY CLIENT-SERVER APPLICATIONS

TCP/IP provides peer-to-peer
communication.
We launch two programs and want
them to communicate with each other

Chances are, we will not be able to
convince them to meet

So we split responsibilities:
One party (the server) must start
execution and wait indefinitely for
incoming requests
So the other party (the client) will
simply connect, knowing that
somebody at the other end will listen

This also simplifies the TCP/IP
mechanisms

Launch

Initiate

communication

Terminate

No program

running!!

Launch

Initiate

communication

Terminate

No program

running!!

NetProgram 1 Program 2

T
im

e

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 1 / 5



WHY CLIENT-SERVER APPLICATIONS

TCP/IP provides peer-to-peer
communication.
We launch two programs and want
them to communicate with each other

Chances are, we will not be able to
convince them to meet

So we split responsibilities:
One party (the server) must start
execution and wait indefinitely for
incoming requests
So the other party (the client) will
simply connect, knowing that
somebody at the other end will listen

This also simplifies the TCP/IP
mechanisms

Launch

Initiate

communication

Terminate

No program

running!!

Launch

Initiate

communication

Terminate

No program

running!!

NetProgram 1 Program 2

T
im

e

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 1 / 5



WHY CLIENT-SERVER APPLICATIONS (CONT’D)

Launch

Initiate

communication

Do stuff

Done

Launch

and wait

Do stuff

OK, close

connection,

wait for next

Acknowledge

Program 2Net

T
im

e Program 1

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 2 / 5



CLIENT ISSUES

When connecting to a server, a client has to know the address of the
machine and a port number

Port numbers identify the actual server to connect to
Note incidentally the concept of server (program) vs server (machine)

Standard versus nonstandard
No matter what, the client must speak the server’s “language” (protocol)

Parameterization
Some clients do one thing only e.g., manage file transfers
Some other (parameterized) clients can access many services

telnet is a fully parameterized client (though not a very smart one at it)

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 3 / 5



SERVER ISSUES

Connection or connectionless
Connection-oriented servers assume that all the data packets arrive
correctly and in order (TCP)
A connectionless server does no assume any delivery guarantee

There might be lost packets, duplicates, and out of order packets
The application (both client and server) should contain code that deals with
losses, duplication, etc.

Major design issue; TCP introduces some overhead, but is in general
preferred because it simplifies design

Simultaneous servers and clients (for other servers) e.g.,

Client Time

server

File

server

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 4 / 5



SERVER ISSUES

Connection or connectionless
Connection-oriented servers assume that all the data packets arrive
correctly and in order (TCP)
A connectionless server does no assume any delivery guarantee

There might be lost packets, duplicates, and out of order packets
The application (both client and server) should contain code that deals with
losses, duplication, etc.

Major design issue; TCP introduces some overhead, but is in general
preferred because it simplifies design

Simultaneous servers and clients (for other servers) e.g.,

Client Time

server

File

server

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 4 / 5



STATE INFORMATION

To keep or not to keep state information, that is the question
A stateless server does not remember what the client did, a stateful one
does
Stateless or stateful?

File server, that allows clients to access a given piece of data from a given
file
IMAP server, that allows clients to retrieve their email messages which have
not been previously received
HTTP server for an e-commerce site

Statelessness is a protocol issue
A stateful server

May be more efficient
Is difficult to maintain in case of loss of communication or computer crash
Problems with identifying clients

A stateless server
Operations must be idempotent
Copes well with loss of communication/computer crash

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 5 / 5



STATE INFORMATION

To keep or not to keep state information, that is the question
A stateless server does not remember what the client did, a stateful one
does
Stateless or stateful?

File server, that allows clients to access a given piece of data from a given
file
IMAP server, that allows clients to retrieve their email messages which have
not been previously received
HTTP server for an e-commerce site

Statelessness is a protocol issue
A stateful server

May be more efficient
Is difficult to maintain in case of loss of communication or computer crash
Problems with identifying clients

A stateless server
Operations must be idempotent
Copes well with loss of communication/computer crash

The client-server model (S. D. Bruda) CS 464/564, Fall 2023 5 / 5


