Client software design

Stefan D. Bruda

CS 464/564, Fall 2023

A TCP CLIENT

@ Get the IP address and port number of the peer

@ Allocate a socket

@ Choose a local IP address

© Allow TCP to choose an arbitrary, unused port number
@ Connect the socket to the server

@ Communicate with the server

e Exchange messages

o Often the client sends requests and the server replies, but this is not always
the case

@ The message exchange happens according to the application-level protocol

@ Close connection

Client software design (S. D. Bruda) CS 464/564, Fall 2023 1/14

PEER IDENTIFICATION

@ Depending on the actual application, the IP address of the peer (i.e.,
server) can be specified in more than one ways, including:
e Hardcoded (rarely)
@ We specify it directly as an integer
o As command-line argument (read from configuration file, etc.)
@ We use gethostbyname to get the actual address (i.e., number)
e Use a separate protocol (broadcast or multicast) to find a server

@ Ports can also be specified in many ways, including:
o ltis a well-known port
@ We use getservbyname to obtain the actual port number
e Hardcoded
@ Possibly suitable for custom client-server applications
e As command-line argument (read from configuration file, etc.)
@ Especially useful for parameterized clients

telnet linux.ubishops.ca 22
my-client linux.ubishops.ca ssh

Client software design (S. D. Bruda) CS 464/564, Fall 2023 2/14

ALLOCATE A SOCKET

@ We need to specify at allocation time:
o The protocol family
@ The socket type (TCP for the time being)
#include <sys/types.h>
#include <sys/socket.h>
int sd = socket(PF_INET, SOCK_STREAM, 0);

@ We end up with a socket descriptor

Client software design (S. D. Bruda) CS 464/564, Fall 2023 3/14

CHOOSING A LOCAL IP ADDRESS

@ Why do we need the local IP address?

Client software design (S. D. Bruda) CS 464/564, Fall 2023 4/ 14

CHOOSING A LOCAL IP ADDRESS

@ Why do we need the local IP address?
@ Because a connection is specified by two endpoints
@ Why is it a problem to choose a local IP address?

Client software design (S. D. Bruda) CS 464/564, Fall 2023 4 /14

CHOOSING A LOCAL IP ADDRESS

@ Why do we need the local IP address?
@ Because a connection is specified by two endpoints
@ Why is it a problem to choose a local IP address?
o Because a machine might have multiple adresses

,! Internet)
/ /
(/1 216.95.151.69
] (pPPO)

10.0.0.1
(br0) 10.0.1.2
(ent)

o The appropriate address must be chosen so that IP is able to route packets
in the right direction

@ Choosing the right IP address is done after a dialogue with IP

@ The system call connect does it for us

Client software design (S. D. Bruda) CS 464/564, Fall 2023 4 /14

CHOOSE A PORT

@ We must specify a local port number for the same reasons we have to
specify a local address
@ The choice of port number does not matter as long as:
e It does not conflict with the port assigned to a well-know service
@ Itis not in use by another process
@ We could try at random until we get a free port. ..

o ...However, the system keeps track of port usage anyway, so this would be
overkill
e Thus the port number choice is again taken care of by the call to connect

Client software design (S. D. Bruda) CS 464/564, Fall 2023 5/14

CONNECT TO THE SERVER

@ In all, we obtain the local coordinates (IP address, port) and we connect
in one step:
int connect(int sockfd, struct sockaddr *serv_addr,
socklen_t addrlen);

@ Something like this:

struct sockaddr_in sin;
int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

perror ("connect");

exit(1);

Client software design (S. D. Bruda) CS 464/564, Fall 2023 6/ 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset (&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;

hinfo = gethostbyname (host) ;

if (hinfo == NULL) return err_host;
sin.sin_addr=(unsigned int)hinfo->h_addr;

sin.sin_port = port;

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);

return err_connect;

return sd;

Client software design (S. D. Bruda) CS 464/564, Fall 2023 7 /14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset (&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

hinfo = gethostbyname (host) ;

if (hinfo == NULL) return err_host;

sin.sin_addr=(unsigned int)hinfo->h_addr; // only if you are lucky

sin.sin_port = port; // only if you are lucky

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);

return err_connect;

return sd;

Client software design (S. D. Bruda) CS 464/564, Fall 2023 8/ 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset (&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

hinfo = gethostbyname (host) ;

if (hinfo == NULL) return err_host;

sin.sin_addr=(unsigned int)htonl(hinfo->h_addr); // assumes a bit too much

sin.sin_port = (unsigned short)htons(port);

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);

return err_connect;

return sd;

Client software design (S. D. Bruda) CS 464/564, Fall 2023 9/ 14

FILLING IN THE SERVER ADDRESS

int connectbyportint(const char* host, const unsigned short port) {
struct hostent *hinfo;
struct sockaddr_in sin;
const int type = SOCK_STREAM;
int sd;

memset (&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

hinfo = gethostbyname (host) ;

if (hinfo == NULL) return err_host;

memcpy (&sin.sin_addr, hinfo->h_addr, hinfo->h_length);

sin.sin_port = (unsigned short)htons(port);

sd = socket(PF_INET, type, 0);
if (sd < 0) return err_sock;

int rc = connect(sd, (struct sockaddr *)&sin, sizeof(sin));
if (rc < 0) {

close(sd);

return err_connect;

return sd;

Client software design (S. D. Bruda) CS 464/564, Fall 2023 10/ 14

COMMUNICATE WITH THE SERVER

@ We send data using send (or write)

@ We receive responses using recv (or read)

o Note that the response could come in pieces, even if the server answers
back in large chunks

@ You should be prepared to accept data a few bytes at a time
const int ALEN = 128;
char* req = "some sort of request";
char ans[ALEN];
char* ans_ptr = ans;
int ans_to_go ALEN, n = O;

send(sd,req,strlen(req),0);

while ((n = recv(sd,ans_ptr,ans_to_go,0)) > 0) {
ans_ptr += n;
ans_to_go -= n;

}

Client software design (S. D. Bruda) CS 464/564, Fall 2023 11/14

COMMUNICATE WITH THE SERVER (CONT'D)

@ We do not necessarily know how long is the response
@ The shape of the response varies according to the application-level
protocol and may be:
@ One line of text (terminated by ’*\n’)
@ We use readline (or equivalent) to read the answer
@ One line of text determines what comes after it

@ Again, we use readline to read one line at a time, and then decide what to do
next based on what we just read

o As much as the server cares to send, with no special end marker

@ We read until there is no more data
@ But how?

Client software design (S. D. Bruda) CS 464/564, Fall 2023 12/ 14

COMMUNICATE WITH THE SERVER (CONT'D)

@ We check whether we have any more data coming on our way

@ Communication is not instantaneous, so we have to give some time for
the data to arrive

const int recv_nodata = -2;

int recv_nonblock (int sd, char* buf, size_t max, int timeout) {
struct pollfd pollrec;
pollrec.fd = sd;
pollrec.events = POLLIN;

int polled = poll(&pollrec,1,timeout);

if (polled == 0) return recv_nodata;
if (polled == -1) return -1;
return recv(sd,buf,max,0);
}
@ Qutcomes:

@ -2: no more data available within the given timeout
e 0: end of file (when the server closes connection on us)
@ n > 0: ncharacters have been read.

Client software design (S. D. Bruda) CS 464/564, Fall 2023 13/ 14

CLOSING THE CONNECTION

@ close closes the connection and destroys the socket
@ Sometimes we want to shut down communication in one direction only

o Reason: the server receive a request and responds to it
o But what does it do now with the connection?

@ |If the client has in fact more requests, the connection should stay open
@ |[f this is the last request, the connection should be closed

@ A client (or server) can partially close a connection, to let the server know
that it is finished.
int err = shutdown(sd,SHUT_WR) ;

@ The server (client) will then receive and end of file
@ The second argument of shutdown can be

@ SHUT_RD (0): further receives will be disallowed
@ SHUT_WR (1): further sends will be disallowed
@ SHUT_RDWR (2): neither receives, nor sends will be allowed

Client software design (S. D. Bruda) CS 464/564, Fall 2023 14/ 14

