
Multiservice servers

Stefan D. Bruda

CS 464/564, Fall 2023

MULTISERVICE SERVERS

Why?
Because it sounds like fun
Because we may need it

E.g., a database server might receive
requests from clients, but also from other
database servers which want to keep
information in sync

How?

p1 p2 pn...

px

listen for clients on ports
loop

forever

terminate
handle clients of type x

child process/new threadin do

fork/pthread_create
if a client (of type x) requests connection on port then

Child

thread

Child

thread

Child

thread

connect
requests

connect
requests

connect
requests

n
e
w

 c
lie

n
ts

(o
f d

iffe
re

n
t ty

p
e
s
)

P
a
re

n
t

th
re

a
d

c
o
m

m
u
n
ic

a
te

c
lie

n
ts

 b
e
in

g
 s

e
rv

e
d

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 1 / 10

SUPER SERVERS

More whys
It is also the case that there are a whole bunch of small TCP services out
there

Some of them may be used once a month or something
Keeping one server running for each and every such a service is an utter waste
of resources

It makes sense to run a “super server” which will listen to many sockets and
launch the appropriate server only when needed

These servers are separate executables that do not run unless the super server
launches them

How?

p1 p2 pn...

px

Lanuch a particular server that

handles clients of type

listen for clients on ports
loop

forever

terminate
handle clients of type x

child process/new threadin do

fork/pthread_create
if a client (of type x) requests connection on port then

x

(using execve)

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 2 / 10

IMPLEMENTATION OF MULTISERVICE OR SUPER

SERVERS

As far as server design is concerned, a multiservice server is not that
different

In particular, you can build such a server that
is iterative (does not make much sense though),
simulates concurrency in one thread of execution,
uses multiple processes, or
uses one process with multiple threads of execution

Sometimes it make sense to launch a different program when a
connection request arrives

More flexible: small changes in various application protocols being handled
do not need the recompilation of the whole thing

Sometimes it make sense to implement everything in one program
E.g., when the different protocols are closely related to each other and make
no sense when considered in isolation

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 3 / 10

IMPLEMENTATION OF MULTISERVICE OR SUPER

SERVERS (CONT’D)
Multiservice servers listen to several master
sockets with no way to anticipate which of
them will receive the next connection request

You can have an individual thread (or process)
listening on each master socket
Alternatively, you can use poll or select in
the master thread

When launching different programs that
handle the actual communication, it makes
much more sense to use processes

Indeed, you just do fork immediately followed
by execve in the child process

When the multiple application protocols are
handled by one program, it makes more
sense to use threads

Those protocols share a big deal of data, else
you would have handled them using separate
programs. . .

Child

thread

Child

thread

Child

thread

connect
requests

connect
requests

connect
requests

n
e
w

 c
lie

n
ts

(o
f d

iffe
re

n
t ty

p
e
s
)

Parent

thread

Parent

thread

Parent

thread

c
o
m

m
u
n
ic

a
te

c
lie

n
ts

 b
e
in

g
 s

e
rv

e
d

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 4 / 10

SUPER SERVER CONFIGURATION

A multiservice server (with all the code in one program) does not need a
lot of configuration
It is reasonable though to expect the ability to configure a super server

We start with a super server skeleton
An administrator may then add or delete services to our skeleton as needed

Static configuration: The configuration information is written in a
configuration file, read by the server each time it starts

If an administrator wants to add (or delete) a service, she will change this
file, stop the server, and launch it again.

Dynamic configuration: We have the same configuration file, but
The server does not need to be stopped and restarted
Instead, the administrator changes this file, and tells the server that the file
has been modified by sending a signal
Once the server receives the signal, it re-reads the configuration file and
applies the changes
Civilized servers react this way when they receive SIGHUP (1)
What if there is no signal mechanism?

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 5 / 10

DYNAMIC CONFIGURATION THROUGH CONTROL

SOCKETS

If there is no signal mechanism, we can use for reconfiguration and many
other thing. . . (drum roll) sockets!

Recall that on any machine running TCP/IP the IP address 127.0.0.1
always denotes the machine itself and only the machine itself
So we can have an extra master socket, the control socket as follows:

A control socket listens only to the address 127.0.0.1 (INADDR_LOOPBACK)
and receives control messages
One such control message could be a request to re-read the configuration
file, and we then implement dynamic configuration

The control socket is actually more general than the SIGHUP signal, and
thus useful for other tasks as well

Indeed, we can use it to send any imaginable commands to the server!
For instance, in a server with a monitor thread we can ask the monitor
thread to print information on demand rather than periodically

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 6 / 10

CONTROL SOCKET: EXAMPLE

void* monitor (void* ignored) {
const int cport = 8000; // control port
int csock, ssock, connections, n;
char com[256];
struct sockaddr_in client_addr; // the address of the client...
unsigned int client_addr_len = sizeof(client_addr); // ... and its length
csock = controlsocket(cport,0);
while (1) {

ssock = accept(csock, (struct sockaddr*)&client_addr, &client_addr_len);
while (1) { // we keep reading commands from the control client...

int done = 0;
if ((n = readline(ssock,com,256)) < 0) {

perror("readline (control)"); done = 1; }
else if (n == 0) done = 1;
else if (strncmp("QUIT",com,strlen("QUIT")) == 0) done = 1;
else if (strncmp("DUMP",com,strlen("DUMP")) != 0) continue;
if (done) {

shutdown(ssock,1); close (ssock); break; // from the inner while loop.
}
// we have received a DUMP command so we get busy:
pthread_mutex_lock(&mon.mutex);
...
pthread_mutex_unlock(&mon.mutex);

} // inner while
} // outer while

}

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 7 / 10

INETD: THE SUPER SERVER

Many Unix systems do not run a server for each and every service they offer;
instead, they run inetd (the “internet daemon”)

Motivation: offer many services without using excessive system
resources
More motivation: ECHO is a useful service for network debugging, but
does not make much sense in a production system; it should be easy to
enable and disable it
Inetd is dynamically configurable (it understands SIGHUP)
The configuration is stored in /etc/inetd.conf, with lines like this:

service socket protocol wait? userid server argu-
name type program ments
ftp stream tcp nowait root /usr/sbin/proftpd

Problem: how does the called program know what socket to
communicate on with the client?

Inetd moves the connection (i.e., opened slave socket) to index zero in the
child’s descriptor table
So a “subserver” (such as /usr/sbin/proftpd) will just read from and write
to socket descriptor 0

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 8 / 10

INETD: THE SUPER SERVER

Many Unix systems do not run a server for each and every service they offer;
instead, they run inetd (the “internet daemon”)

Motivation: offer many services without using excessive system
resources
More motivation: ECHO is a useful service for network debugging, but
does not make much sense in a production system; it should be easy to
enable and disable it
Inetd is dynamically configurable (it understands SIGHUP)
The configuration is stored in /etc/inetd.conf, with lines like this:

service socket protocol wait? userid server argu-
name type program ments
ftp stream tcp nowait root /usr/sbin/proftpd

Problem: how does the called program know what socket to
communicate on with the client?

Inetd moves the connection (i.e., opened slave socket) to index zero in the
child’s descriptor table
So a “subserver” (such as /usr/sbin/proftpd) will just read from and write
to socket descriptor 0

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 8 / 10

MOVING THE SOCKET DESCRIPTOR

The super server (e.g., inetd) will do something like this:
if (fork() == 0) {

close(msock); // child does not listen to master socket...

close(0);

dup2(ssock,0); // copy ssock to index 0 in the descriptor table

char** slave_server_args = {0};

execve(slave_server, slave_server_args,envp);

}

else

... (parent code)

Then the slave server will do:
while ((n = readline(0,req,ALEN-1)) != 0) {

if (strcmp(req,"quit") == 0) { break; }

send(0,ack,strlen(ack),0);

send(0,req,strlen(req),0);

send(0,"\n",1,0);

}

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 9 / 10

XINETD

In fact, newer systems use xinetd (the “extended internet daemon”)
Behaviour is similar to inetd except that the place of a configuration file is
taken by a directory (/etc/xinetd.d)
For any service you can use, you drop into this directory a small text file
< hoare:~ > cat /etc/xinetd.d/cups-lpd

service printer

{

socket_type = stream

protocol = tcp

wait = no

user = lp

group = lp

passenv =

server = /usr/libexec/cups/daemon/cups-lpd

server_args = -o document-format=application/octet-stream

disable = yes

}

Multiservice servers (S. D. Bruda) CS 464/564, Fall 2023 10 / 10

