
Practical aspects of server design

Stefan D. Bruda

CS 464/564, Fall 2023

WRITING ACTUAL CODE FOR ACTUAL SERVERS

A (Unix) server is different from a normal program
In particular, a server does not interact with a user
It communicates instead with other programs over a network
It also spawns threads/processes (which are not under immediate user
control)

One is faced thus with a bunch of new issues, including
Preventing users to affect server’s execution in other ways than the ones
specified
Providing a mechanism for the server to report status and errors
Resource management
Access control and other security issues

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 1 / 25

DAEMONS EVERYWHERE

A normal program runs in foreground
It is attached to a terminal (more general, a “tty”)
It receives user input from that terminal
It prints output (using cout<<, printf, . . .) and error messages (using
cerr<<, perror, . . .) to the same terminal

A server is a daemon i.e., it runs in background
A production server is not attached to any terminal
Instead, it is launched upon boot, maybe even before terminals are born
Thus, it does not accept user input
It must send the output to something else than a terminal too

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 2 / 25

PROGRAMMING A SERVER AS A DAEMON

The easy way: you put the server in background explicitly
shfd -d -v &

The hard way: the server puts itself into the background
You start with a process that does the server initialization
It prints whatever messages it wants (to the terminal or something)
It then goes in the background for the rest of the job

int main (...) {

Initialize server (socket binding, preparation of the file system)
int bgpid = fork();

if (bgpid < 0) {

perror("startup fork");

return 1; }

if (bgpid) // parent dies

return 0;

Child continues and becomes the server
}

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 3 / 25

BACKGROUND THE HARD WAY (CONT’D)

OK, but why?
A server is usually started up by the init script
This script starts the servers in a specific order

E.g., the database server should be started before the Web server (which
needs it)

The init script cannot put everything into the background from the very
start

It has to make sure that the server actually started before moving forward

On the other hand, if the server never gets into background, the init script
never gets a chance to go ahead and start the other services
Ergo, a server that expects to be launched by the init script (they all
should!)

Sits in foreground until it makes sure that the startup succeeded
Goes then into background for the actual work

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 4 / 25

DEBUGGING A DAEMON

A server will eventually need debugging, like any other program
When this happens, it is much more convenient to run the server in
foreground

So that we can see the output and maybe stop it by typing Control-c

So it is convenient to have a command line switch that will keep the
server in foreground:

int main (...) {

Initialize (socket binding, preparation of the file system)
if (strcmp(argv[1],"-d") == 0) {

argc--; argv++;

int bgpid = fork();

if (bgpid < 0) {

perror("startup fork");

return 1; }

if (bgpid)

return 0;

}

Child (or parent) continues with the server code
}

Normal operation:
shfd -f 10000

Debug:
shfd -d -f 10000

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 5 / 25

DEBUGGING AND OTHER VERBOSE OUTPUT

Debugging programs is generally difficult
Debugging servers is even more so (they are concurrent, grumpy, etc.)
Typical debugging involves verbose logging
In the process the server usually stays attached so that we can stop (and
restart it) as needed
While attached, it is probably a good idea not to redirect the standard
output and standard error streams, as it is often more convenient to have
the whole output in the terminal
These variations in behaviour are best accomplished via command-line
switches

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 6 / 25

COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT

Normal way to obtain the command line arguments:

#include <stdio.h>

#include <unistd.h>

int main (int argc, char** argv) {

for (int i = 1; i < argc; i++) {

printf("argv[%d] = %s\n", i, argv[i]); } }

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 7 / 25

COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT

Obtain command line arguments by identifying switches:

#include <stdio.h>

#include <unistd.h>

extern char *optarg;

extern int optind;

int main (int argc, char** argv) {

int c;

printf("--------- options: ---------\n");

while ((c = getopt (argc,argv,"abcd:")) != -1) {

printf("opt: %c arg %s\n", (char)c, optarg);

}

argc -= optind - 1; argv += optind - 1;

printf("------ remaining args: ------\n");

for (int i = 1; i < argc; i++) {

printf("argv[%d] = %s\n", i, argv[i]); } }

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 8 / 25

COMMAND-LINE SWITCHES FOR VERBOSE OUTPUT

normal

argument

g++ −c foo.cc −o foo.o

switch switch

switch argument

Before parsing options: After parsing options:

g++ −c foo.cc −o foo.o

argv[1]

argv[2]

argv[3]

argv[4]

g++ −c foo.cc −o foo.o

argv[1]

argv[4]

argv[2]

argv[3]

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 9 / 25

TYPICAL USE OF SWITCHES

-d or -D usually stand for “debug”
This might make the daemon more verbose but it almost always prevents the
daemon from detaching
Typically output is produced to standard output (as opposed to log facilities),
but this is not always the case (probable cause: laziness)

-v usually stands for “verbose output”
It increases the verbosity of the program but does not necessarily keep the
program attached and does not necessarily change the destination of
program’s output
Often different levels of verbosity are needed; this is accomplished typically
by providing multiple -v switches in the command line (the more
occurrences of -v the more verbose the program)

As an alternative to the command line debugging behaviour can be
changed via configuration options in a configuration file

Often both methods are supported

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 10 / 25

TALKING TO DAEMONS

We have first to find the process id of the server process
We do ps aux, we get a lot of lines like this
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
...
bruda 13319 0.0 0.1 2572 816 pts/1 S 12:15 0:00 shfd -d -D
...

and then we hunt for our server between them
We do ps aux | grep name, we get only the lines that contain name
We already have the pid (useful!) — how?

We could then send a signal to the server
kill pid sends SIGQUIT to pid (which may terminate)
kill -KILL pid sends SIGKILL to pid (which will terminate)
kill -HUP pid sends SIGHUP to pid (which restarts if civilized)

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 11 / 25

LONELY DAEMONS

Servers are lonely. It does not make sense to run multiple copies of a
server on the same machine

How do we prevent multiple copies to run?

Each server has a well-known associated lock file
Different servers use different lock files, but a server will always use the
same lock file

Immediately upon startup the server tries to acquire a lock on this file
If it succeeds, it goes ahead with the rest
If it fails, it terminates (there is another copy running)

An error message would be nice too. . .

When the server exits, it releases the lock on the file and deletes the file
Loosely speaking, each server runs in a critical region

The lock file is also a good place to hold the process id of the server

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 12 / 25

LONELY DAEMONS

Servers are lonely. It does not make sense to run multiple copies of a
server on the same machine

How do we prevent multiple copies to run?

Each server has a well-known associated lock file
Different servers use different lock files, but a server will always use the
same lock file

Immediately upon startup the server tries to acquire a lock on this file
If it succeeds, it goes ahead with the rest
If it fails, it terminates (there is another copy running)

An error message would be nice too. . .

When the server exits, it releases the lock on the file and deletes the file
Loosely speaking, each server runs in a critical region

The lock file is also a good place to hold the process id of the server

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 12 / 25

LONELY DAEMONS

Servers are lonely. It does not make sense to run multiple copies of a
server on the same machine

How do we prevent multiple copies to run?

Each server has a well-known associated lock file
Different servers use different lock files, but a server will always use the
same lock file

Immediately upon startup the server tries to acquire a lock on this file
If it succeeds, it goes ahead with the rest
If it fails, it terminates (there is another copy running)

An error message would be nice too. . .

When the server exits, it releases the lock on the file and deletes the file
Loosely speaking, each server runs in a critical region

The lock file is also a good place to hold the process id of the server

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 12 / 25

GRUMPY DAEMONS

Except for the signals they like, daemons do not want to talk to you
If you leave them in the sate typical for a normal program, they might
even get angry and refuse to do the work

This happens when they try for some reason to access standard input
(descriptor 0)
So we have to close descriptor 0
What the heck, we close all the descriptors except standard output and
standard error!

for (int i = 0; i < getdtablesize(); i++)

if (i != 1 && i != 2)

close(i);

Closing descriptors is very important, we thus prevent the server from
consuming resources unnecessarily but most importantly we have control
over the descriptors (a matter of security)
But note that we close them before opening back those descriptors we
actually need (so that we positively know what are the files on which the
server operates)

Closing descriptor 0 does not make our server happy though (why?)

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 13 / 25

GRUMPY DAEMONS (CONT’D)

The server may still try to access descriptor 0
Many library functions assume that the first three descriptors are open
We just exchange one error for another!

So we open descriptor 0 again
This time, descriptor 0 will point to a special device which does nothing (“bit
bucket”)
This device is called, suggestively, /dev/null
Reading from /dev/null always return an end of file
Anything written to /dev/null is discarded

for (int i = 0; i < getdtablesize(); i++)

if (i != 1 && i != 2)

close(i);

// We closed descriptor 0 already, so this

// will be the first one available

int fd = open("/dev/null", O_RDWR);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 14 / 25

DETACHED DAEMONS

Each Unix process inherits a connection to its controlling tty
A user that started a process can control it by issuing appropriate control
commands to that process’ controlling tty

Unlike normal programs, servers should not receive signals generated by
the process that started it

Signaling from the tty to the piece of code that starts the server is acceptable
(sometimes desired), signaling to the server itself is not

A server must therefore detach itself from the controlling tty
#include <sys/ioctl.h>

int fd = open("/dev/tty",O_RDWR);

ioctl(fd,TIOCNOTTY,0);

close(fd);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 15 / 25

DETACHED DAEMONS AND THEIR OUTPUT

OK, so we have now no terminal, where do we put the output?

We redirect standard output (descriptor 1) and standard error (descriptor
2)
Using the command line:

Redirecting both to the same file:
shfd -d >& global-output-file

shfd -d >>& global-output-file

Redirecting to different files (bash-like shells):
shfd -d 1> output-file 2> error-file

shfd -d 1>> output-file 2>> error-file

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 16 / 25

DETACHED DAEMONS AND THEIR OUTPUT

OK, so we have now no terminal, where do we put the output?
We redirect standard output (descriptor 1) and standard error (descriptor
2)
Using the command line:

Redirecting both to the same file:
shfd -d >& global-output-file

shfd -d >>& global-output-file

Redirecting to different files (bash-like shells):
shfd -d 1> output-file 2> error-file

shfd -d 1>> output-file 2>> error-file

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 16 / 25

DETACHED DAEMONS AND THEIR OUTPUT (CONT’D)

Command line syntax varies
Not a good idea security-wise to rely on descriptors opened by somebody
else
How about the initializing code? It should print to the terminal

So we redirect output from inside the program
// We close everything!!

for (int i = getdtablesize() - 1; i >= 0 ; i--)

close(i);

// We closed descriptor 0 already, so this

// will be the first one available

int fd = open("/dev/null", O_RDWR);

// We now re-open descriptors 1 and 2, in this order:

Same file:
fd = open("global-output-file", O_WRONLY|O_CREAT|O_APPEND);

dup(fd);

Different files:
fd = open("output-file", O_WRONLY|O_CREAT|O_APPEND);

fd = open("error-file", O_WRONLY|O_CREAT|O_APPEND);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 17 / 25

DETACHED DAEMONS AND THEIR OUTPUT (CONT’D)

Command line syntax varies
Not a good idea security-wise to rely on descriptors opened by somebody
else
How about the initializing code? It should print to the terminal
So we redirect output from inside the program

// We close everything!!

for (int i = getdtablesize() - 1; i >= 0 ; i--)

close(i);

// We closed descriptor 0 already, so this

// will be the first one available

int fd = open("/dev/null", O_RDWR);

// We now re-open descriptors 1 and 2, in this order:

Same file:
fd = open("global-output-file", O_WRONLY|O_CREAT|O_APPEND);

dup(fd);

Different files:
fd = open("output-file", O_WRONLY|O_CREAT|O_APPEND);

fd = open("error-file", O_WRONLY|O_CREAT|O_APPEND);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 17 / 25

DAEMONS DON’T LIKE SIGNALS

There is no signal from the controlling tty, but nonetheless a server may
receive signals (e.g., from you when you use the command kill)
Some signals (e.g., SIGHUP, maybe) have some meaning to the server

One signal always has some meaning to any Unix program namely, SIGKILL

Signals with meanings should have associated signal handlers (except
SIGKILL)

signal(signal,handler-function);
Some other signals do not have any meaning

Signals that are not needed should be ignored
There is a predefined function that does exactly this: SIG_IGN

signal(signal,SIG_IGN);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 18 / 25

SIGPIPE

Notable signal
Sent to the server when a client closes the connection
When unhandled a SIGPIPE brings down the whole process
A server must not die when a client leaves
Therefore this signal should always be explicitly handled
Ignoring it is fine for most applications, since the socket also receives an
end of file

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 19 / 25

DAEMONS ARE NOT GREGARIOUS

Unix places each process in a process group
It can then treat a set of related processes as one entity
A server inherits membership in a process group
But usually a server operates independently from any process group

E.g., it should not receive signals sent to its parent’s group
The server must thus leave its parent’s group:

setpgid(what-process,to-what-group);
The process id of the current process (which is passed to setpgid) can be
obtained by using the function getpid

To create a new, private group we pass 0 as second argument of setpgrp.
So we do:

setpgid(getpid(),0);

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 20 / 25

SECURE DAEMONS

Servers may run with root privileges
In other words, they can do whatever they please with your system
So you the programmer have to make sure they do not do things that
interfere with normal system operation

Careful programming is one way of keeping them at bay
In particular, it is crucial that you check for array bounds, and that you do not
access memory areas you do not own
Not checking for these is the most usual cause for issuing security updates
(and for people cracking into your system)
Obviously a complex problem (to be continued)

In addition, you should be careful about what servers write to disk and
where

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 21 / 25

DAEMONS AND THEIR DIRECTORIES

When a program is launched, it inherits an environment variable called
the current working directory
When a program creates or opens a file it looks in this current working
directory
Servers are launched by the init script, which works in a directory whose
content should not be modified
Servers have this habit to write on disk
You can specify the directory they write into by providing absolute paths
to your files
But a server that encounters an error condition might dump core (write to
disk a memory image for debugging purposes. . . in the current working
directory!)
But a server started by the system administrator will have the current
directory as the home directory of the administrator
But a server working in some directory will prevent that directory to be
unmounted even if the server does not use the directory for anything
Conclusion: You should move a server to a known, “safe” directory. Most
servers do: chdir("/run/shfd");

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 22 / 25

CONFIDENTIAL DAEMONS

Some data that is written to files is log data, which should be readable
(but not writable) by many people
Some other data should not be accessible to anybody else (e.g.,
passwords)
Each file in a Unix file system has a set of permissions to control access
to files

You can (and should) specify at creation time the permissions of the file you
create
You can also specify a set of permissions that will never be set (the umask)

read permission set
write permission set

permission not set
execute permission set

r

−

x

w

o
th

e
rs

:

g
ro

u
p

:

o
w

n
e

r:

rwxr−xrw−

111101110

7 5 6

756

740

permissions for the file (declared):
umask (denied permissions):

actual permissions for the file:
Bitwise AND with

the negated umask

037

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 23 / 25

SETTING A UMASK

You do not want to run into the possibility of creating a file owned by the
administrator and with all the permissions set (777). Not even by chance!
So, besides setting suitable permissions for each file you create, it is a
very good idea to provide a suitable umask for the server as a whole
To set a (new) umask, you use the system call umask

It is very comfortable to work with numbers in octal when you deal with file
permissions

This way a digit corresponds with a set of permissions for a given group of users
In C/C++ a literal integer whose first digit is 0 is considered to be in base 8
So when you call umask, it is likely that you do not want to write

umask(137);

but rather
umask(0137);

Always keep in mind that the umask specifies permissions that are denied

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 24 / 25

DAEMONS AND ZOMBIES (A REMINDER)

If the main server exits, no problems will arise
However, if the server process creates other processes, you may end up
with zombie processes

So remember to always wait after your children (as we talked about earlier)
That is, if your server spawns new processes, it has to have a suitable
handler for the SIGCHLD signal

Same issue is applicable to attached threads that are not joined

Practical aspects of server design (S. D. Bruda) CS 464/564, Fall 2023 25 / 25

