Deadlock and starvation

Stefan D. Bruda

CS 464/564, Fall 2023



CLIENT-SERVER SYSTEMS CAN FAIL

@ Temporary blocking: a computation blocks until an event happens
e This event will happen eventually
@ Deadlock: a computation blocks until an event happens.
@ But the event never happens
e Computation has no chance to proceed; this is a permanent failure
o Typically, this happens when we have a set of processes (or threads) in
which each component is blocked waiting for a resource that is held by
another component in the set.
@ Test for whether deadlock has occurred: will an external input allow
computation to proceed?
@ Deadlock can result from:

e Ambiguous protocol specification
e Programming errors and oversight

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 1/11



DEADLOCK DETECTION

@ Can we detect deadlock at runtime?
@ For a system running on one machine: impossible
o We have to distinguish between temporary blocking and deadlock
e The programmer can invent new resources (e.g., mutexted variables), so the
operating system has no way of knowing which program uses what resource
e Deadlock can depend on the order in which events arrive. So even if we
know everything about resources, we still have to do something similar to
proving a theorem.
@ For a distributed system: impossible
o All of the above
o We also have to inspect multiple programs running on multiple machines,
possibly under different conditions (e.g., different operating systems)
e Deadlocks can occur in a distributed system even if the individual programs
are deadlock-free!
@ No practical program can be designed to determine whether a set of
clients and servers are deadlocked
@ The only thing we can do is to minimize the possibility of deadlock
o Recipe: care at all the levels (protocol, coding, installation)
@ To avoid deadlock, one must first understand how can it occur
o We therefore discuss (some of) the situations that can deadlock the system

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 2/ 11



SINGLE INTERACTION DEADLOCK

@ The simplest form of deadlock, and thus the easiest to prevent
@ We use the request-response paradigm, and timeout values

@ Request-response: one side (usually the client) sends a request, the
other responds
@ The protocol must specify which side sends the request
@ A protocol that does not fully specify such kind of synchronization rules is
prone to failure
e Example of protocol featuring imprecise specifications:
@ The client establishes a connection to the server
@ Immediately after the connection is established, either the server of the client
sends an initialization message, to which the peer responds
© Then the interaction happens normally (client sends requests, server responds)
@ The protocol allows flexibility in its implementation, but two implementations
can easily collide and generate a deadlock

@ All the interaction sequencing must be precisely specified and
implemented

e Typical approach to sequencing: describe the protocol using finite automata

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 3/ 11



SINGLE INTERACTION DEADLOCK (CONT'D)

@ Other problem: inherent unreliability of the communication medium
o Typical manifestation: A message is lost, whomever is supposed to receive it
deadlocks (and in turns deadlocks its peer)
e Variant: An incomplete message is sent (e.g., a line without the terminating
newline); if the peer expects the complete message, it deadlocks
@ This problem is mostly manifest when using an unreliable transmission
protocol (UDP), but it can happen anywhere
@ In no circumstance should you use TCP algorithms with UDP connections

@ Solution:

e Timeout: If too much time passes without any reaction from the peer, the
program times out

@ The connection is considered dropped (TCP only), or
@ Mechanisms for retransmission are provided (does not make much sense in
TCP applications)

e Choosing the right timeout value is black magic; there is no recipe

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 4/ 11



SINGLE INTERACTION DEADLOCK (FINALE)

@ If we use a concurrent server, single interaction deadlock is not critical in
many cases

e Often, only one thread/process and the corresponding client deadlocks

o However, this eats up resources, possibly preventing other clients to connect!

o Additionally, things get really hairy if a thread/process deadlocks within a
critical region!

@ So even if single interaction deadlock is apparently unimportant, one must
still pay attention to such a possibility

@ A related problem: starvation

Deadlock and starvation (S. D. Bruda)

o Some clients can access the service, while others cannot (i.e., some clients
starve)

o A real problem in iterative servers, but also an issue in concurrent ones

o An iterative server must not permit arbitrarily long interactions; a concurrent
server should in principle do the same (why?)

o Timeout mechanisms are applicable here too (but are not panacea)

CS 464/564, Fall 2023 5/ 11



BUSY CONNECTIONS

@ Clients that do not time out can still generate starvation
@ TCP ensures flow control; data is written by the program in a buffer and then
transmitted at a pace the client can handle
o A clients that refuses to read the responses (or reads them slowly) can delay
or even prevent further transmission (machine-wide!)
e Same goes for a client that overwhelms the server with data

@ Avoiding blocking operations

e During long operations, the server can poll periodically the input and read
from the socket even if it has no use for the incoming data at that moment
o A server can also avoid blocking operations

@ For instance, poll the socket, and send only if there is room
@ Also implement a timeout mechanism to take care of the case in which the client
never reads the responses

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 6/ 11



CONCURRENCY: TO MANAGE OR NOT TO MANAGE

@ The first kind of starvation (client just staying there and doing nothing) is
solved by not managing concurrency. ..

e Then a malicious client will just block the thread that handles it, no problem,
there are more where this one came from; the thread does not even get
scheduled, so there is no overhead

o ...Apparently!

@ Resources (including concurrency) are managed anyway at machine
level

e Managed resources include: processes, active sockets, total number of
descriptors

e ltis also the case that each TCP connection uses buffer space

e So if you do not manage your resources you just exchange one problem (a
misbehaving server) to another with is much worse (a misbehaving machine)

@ Conclusion: in all but the most trivial cases concurrency should be managed

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 7/ 11



REPORT PROBLEMS

@ The maximum amount of resources available is not the same between
multiple operating systems—indeed it may not be the same even for
identical machines running the same OS!

@ In other words, you cannot anticipate whether your server runs out of
resources

@ So arrange that your server report problems
@ Check the values returned by all the system calls and generate appropriate
log messages
@ Even if the error is not critical, do generate a message.
@ The system administrator can then examine the system logs and react to
unusual conditions

@ Yes, you may want to consider even calls to fork or new

@ An error condition here should probably generate a LOG_EMERG syslog entry

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 8/ 11



LIVELOCK

@ Scenario:

@ Syslog obtains the timestamp of each log entry from a time server

e The system administrator decides to debug the time server; debug
information goes to syslog

o A log entry generates a request from the time server, which in turn
generates other log entries, which in turn generates fresh requests to the
time server, which in turn. ..

@ Something like a deadlock (i.e., caused by circular dependencies), but
not really a deadlock

o Indeed, the servers are not blocked; they all work like crazy; as soon as a
message is processed, another one arrives
o This situation is called livelock

@ Solution: avoid circular dependencies by documenting dependencies

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 9/ 11



UNDERSTAND AND DOCUMENT DEPENDENCIES

@ Almost anything is a client-server application these days
@ A programmer should

e Understand the existing dependencies and avoid introducing cycles
o Document the newly introduced dependencies

@ Approaches in keeping dependency information:
o Coarse-grained: services are the working entities
@ If syslog uses the time service then the time service cannot call syslog no matter
what
@ Advantage: the resulting dependency graph is easy to manage
@ Disadvantage: may introduce stronger restrictions than necessary
e Fine-grained: servers are the working entities
@ If syslog server Y uses the time server X, then time server X cannot use the
syslog server Y (but can use, say, syslog server 2)
@ Advantage: does not introduce unnecessary constraints
o Disadvantage: the resulting dependency graph is nightmarish to manage

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 10/ 11



A LAST WORD: NON-DISTRIBUTED DEADLOCK

@ It is not necessary to have a client-server application to obtain deadlocks;
a multithreaded program will do nicely

@ The potential problem: critical regions (mutexes, semaphores, etc.)

@ Simple rules to avoid deadlocks:
o If you must acquire more than one critical region simultaneously, always
acquire them in the same order
@ Do not rely on “this can never happen!” It can happen, and will do so at the worst
possible moment
o Make sure that you release the critical region eventually
@ Common problem: returning from within a critical region without releasing it;
returning also means exiting with an error
@ Remember, a mutex is just an integer which is, say, incremented once acquired;
if your thread returns/dies/is canceled without releasing the thing, nothing is
there to release it for you;
@ Another common problem: acquiring critical regions in signal handlers
@ Signal handlers fire up asynchronously, so there is a decent chance that one will
fire up while the main code is. . .in the critical region the handler is supposed to
acquire

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 11/ 11



