
Deadlock and starvation

Stefan D. Bruda

CS 464/564, Fall 2023



CLIENT-SERVER SYSTEMS CAN FAIL

Temporary blocking: a computation blocks until an event happens
This event will happen eventually

Deadlock: a computation blocks until an event happens.
But the event never happens
Computation has no chance to proceed; this is a permanent failure
Typically, this happens when we have a set of processes (or threads) in
which each component is blocked waiting for a resource that is held by
another component in the set.

Test for whether deadlock has occurred: will an external input allow
computation to proceed?
Deadlock can result from:

Ambiguous protocol specification
Programming errors and oversight

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 1 / 11



DEADLOCK DETECTION

Can we detect deadlock at runtime?
For a system running on one machine: impossible

We have to distinguish between temporary blocking and deadlock
The programmer can invent new resources (e.g., mutexted variables), so the
operating system has no way of knowing which program uses what resource
Deadlock can depend on the order in which events arrive. So even if we
know everything about resources, we still have to do something similar to
proving a theorem.

For a distributed system: impossible
All of the above
We also have to inspect multiple programs running on multiple machines,
possibly under different conditions (e.g., different operating systems)
Deadlocks can occur in a distributed system even if the individual programs
are deadlock-free!

No practical program can be designed to determine whether a set of
clients and servers are deadlocked
The only thing we can do is to minimize the possibility of deadlock

Recipe: care at all the levels (protocol, coding, installation)
To avoid deadlock, one must first understand how can it occur

We therefore discuss (some of) the situations that can deadlock the system
Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 2 / 11



SINGLE INTERACTION DEADLOCK

The simplest form of deadlock, and thus the easiest to prevent
We use the request-response paradigm, and timeout values
Request-response: one side (usually the client) sends a request, the
other responds

The protocol must specify which side sends the request
A protocol that does not fully specify such kind of synchronization rules is
prone to failure
Example of protocol featuring imprecise specifications:

1 The client establishes a connection to the server
2 Immediately after the connection is established, either the server of the client

sends an initialization message, to which the peer responds
3 Then the interaction happens normally (client sends requests, server responds)

The protocol allows flexibility in its implementation, but two implementations
can easily collide and generate a deadlock

All the interaction sequencing must be precisely specified and
implemented

Typical approach to sequencing: describe the protocol using finite automata

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 3 / 11



SINGLE INTERACTION DEADLOCK (CONT’D)

Other problem: inherent unreliability of the communication medium
Typical manifestation: A message is lost, whomever is supposed to receive it
deadlocks (and in turns deadlocks its peer)
Variant: An incomplete message is sent (e.g., a line without the terminating
newline); if the peer expects the complete message, it deadlocks

This problem is mostly manifest when using an unreliable transmission
protocol (UDP), but it can happen anywhere

In no circumstance should you use TCP algorithms with UDP connections

Solution:
Timeout: If too much time passes without any reaction from the peer, the
program times out

The connection is considered dropped (TCP only), or
Mechanisms for retransmission are provided (does not make much sense in
TCP applications)

Choosing the right timeout value is black magic; there is no recipe

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 4 / 11



SINGLE INTERACTION DEADLOCK (FINALE)

If we use a concurrent server, single interaction deadlock is not critical in
many cases

Often, only one thread/process and the corresponding client deadlocks
However, this eats up resources, possibly preventing other clients to connect!
Additionally, things get really hairy if a thread/process deadlocks within a
critical region!
So even if single interaction deadlock is apparently unimportant, one must
still pay attention to such a possibility

A related problem: starvation
Some clients can access the service, while others cannot (i.e., some clients
starve)
A real problem in iterative servers, but also an issue in concurrent ones
An iterative server must not permit arbitrarily long interactions; a concurrent
server should in principle do the same (why?)
Timeout mechanisms are applicable here too (but are not panacea)

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 5 / 11



BUSY CONNECTIONS

Clients that do not time out can still generate starvation
TCP ensures flow control; data is written by the program in a buffer and then
transmitted at a pace the client can handle
A clients that refuses to read the responses (or reads them slowly) can delay
or even prevent further transmission (machine-wide!)
Same goes for a client that overwhelms the server with data

Avoiding blocking operations
During long operations, the server can poll periodically the input and read
from the socket even if it has no use for the incoming data at that moment
A server can also avoid blocking operations

For instance, poll the socket, and send only if there is room
Also implement a timeout mechanism to take care of the case in which the client
never reads the responses

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 6 / 11



CONCURRENCY: TO MANAGE OR NOT TO MANAGE

The first kind of starvation (client just staying there and doing nothing) is
solved by not managing concurrency. . .

Then a malicious client will just block the thread that handles it, no problem,
there are more where this one came from; the thread does not even get
scheduled, so there is no overhead
. . . Apparently!

Resources (including concurrency) are managed anyway at machine
level

Managed resources include: processes, active sockets, total number of
descriptors
It is also the case that each TCP connection uses buffer space
So if you do not manage your resources you just exchange one problem (a
misbehaving server) to another with is much worse (a misbehaving machine)
Conclusion: in all but the most trivial cases concurrency should be managed

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 7 / 11



REPORT PROBLEMS

The maximum amount of resources available is not the same between
multiple operating systems—indeed it may not be the same even for
identical machines running the same OS!
In other words, you cannot anticipate whether your server runs out of
resources
So arrange that your server report problems

Check the values returned by all the system calls and generate appropriate
log messages

Even if the error is not critical, do generate a message.
The system administrator can then examine the system logs and react to
unusual conditions

Yes, you may want to consider even calls to fork or new
An error condition here should probably generate a LOG_EMERG syslog entry

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 8 / 11



LIVELOCK

Scenario:
Syslog obtains the timestamp of each log entry from a time server
The system administrator decides to debug the time server; debug
information goes to syslog
A log entry generates a request from the time server, which in turn
generates other log entries, which in turn generates fresh requests to the
time server, which in turn. . .

Something like a deadlock (i.e., caused by circular dependencies), but
not really a deadlock

Indeed, the servers are not blocked; they all work like crazy; as soon as a
message is processed, another one arrives
This situation is called livelock

Solution: avoid circular dependencies by documenting dependencies

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 9 / 11



UNDERSTAND AND DOCUMENT DEPENDENCIES

Almost anything is a client-server application these days
A programmer should

Understand the existing dependencies and avoid introducing cycles
Document the newly introduced dependencies

Approaches in keeping dependency information:
Coarse-grained: services are the working entities

If syslog uses the time service then the time service cannot call syslog no matter
what
Advantage: the resulting dependency graph is easy to manage
Disadvantage: may introduce stronger restrictions than necessary

Fine-grained: servers are the working entities
If syslog server Y uses the time server X , then time server X cannot use the
syslog server Y (but can use, say, syslog server Z )
Advantage: does not introduce unnecessary constraints
Disadvantage: the resulting dependency graph is nightmarish to manage

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 10 / 11



A LAST WORD: NON-DISTRIBUTED DEADLOCK

It is not necessary to have a client-server application to obtain deadlocks;
a multithreaded program will do nicely
The potential problem: critical regions (mutexes, semaphores, etc.)
Simple rules to avoid deadlocks:

If you must acquire more than one critical region simultaneously, always
acquire them in the same order

Do not rely on “this can never happen!” It can happen, and will do so at the worst
possible moment

Make sure that you release the critical region eventually
Common problem: returning from within a critical region without releasing it;
returning also means exiting with an error
Remember, a mutex is just an integer which is, say, incremented once acquired;
if your thread returns/dies/is canceled without releasing the thing, nothing is
there to release it for you;
Another common problem: acquiring critical regions in signal handlers
Signal handlers fire up asynchronously, so there is a decent chance that one will
fire up while the main code is. . . in the critical region the handler is supposed to
acquire

Deadlock and starvation (S. D. Bruda) CS 464/564, Fall 2023 11 / 11


