
Threads

Stefan D. Bruda

CS 464/564, Fall 2023

THREADS VS. PROCESSES

We have seen how to use concurrent processes, with one thread of
execution each
Concurrency can be also implemented using one process with multiple
threads of execution

Multiple processes with multiple threads of execution each are of course
possible as well

Threads (sometimes called “light processes”) behave similar to
processes, in the sense that they execute concurrently

However, threads share most of their memory space with each other,
including the process’ descriptor table

In Linux you can create something similar with threads (but considerably
more robust) using clone(2)

However, clone(2) is not portable (not even to other Unices), so the POSIX
standard is usually preferred
In Linux the POSIX threads are implemented as a relatively thin layer over
the clone(2) and related API

Threads (S. D. Bruda) CS 464/564, Fall 2023 1 / 16

POSIX THREADS

Linux threads follow the POSIX standard 1003.1, which is observed by
many other Unix systems
Features:

Threads can be created at any time using the system call pthread_create
Threads execute concurrently, and are preemptible (one thread cannot block
the CPU)

A thread can give up the CPU voluntarily by using the system call sched_yield
(also available for processes)

Each thread has its own stack (local variables), but all threads in a process
share the rest of the address space (global variables, descriptor table, heap,
. . .)
The threads API include functions for coordination and synchronization
(including mechanisms to implement critical regions in memory, i.e., without
file locks)

A program that uses threads must include <pthread.h> and must be
linked with the library pthread, i.e.,

g++ -lpthread -o tserv tserv.o tcp-utils.o

g++ -pthread -o tserv tserv.o tcp-utils.o

Threads (S. D. Bruda) CS 464/564, Fall 2023 2 / 16

THREADS VS. PROCESSES

Advantages of threads:
Efficiency: context switching between threads is generally (though not
always) faster than between processes
The existence of shared memory: threads can communicate between
each other using the shared memory, as opposed to processes

The implementation of critical regions does not need to use locks on files
Monitoring is also easy to implement

Disadvantages of threads:
The existence of shared memory: two threads may interfere with each
other when both try to access shared objects (e.g., the same global
variable) = interference
Lack of robustness: if a thread performs an illegal operation (e.g., a
segmentation violation) the whole process is terminated
System calls may not be thread safe

Annoyingly, thread safety is not always documented
If in doubt, put the respective system call in a critical region (discussed later)

Threads (S. D. Bruda) CS 464/564, Fall 2023 3 / 16

CAVEATS

Do not abuse critical regions
You have a very good chance to unboundedly decrease response time
In particular, a read/recv in a critical region can easily deadlock a server (so
don’t ever do it!)
Critical regions and signal handlers do not mix well

File and socket descriptors are shared
Once a thread opens a file/socket, it is opened for all the threads
Most importantly, once a thread closes a descriptor, no other thread can
access that descriptor successfully

If a thread calls exit then the whole process terminates
A thread terminates itself when its top-level function returns, or explicitly by
calling pthread_exit

Threads (S. D. Bruda) CS 464/564, Fall 2023 4 / 16

CONCURRENT SERVERS, REVISITED

1 create, bind and place in passive
mode the master socket

2 repeat forever:
1 accept the next connection request

from the socket and create a new
slave socket s for the connection.

2 pthread create; in the new thread:
1 do not close master socket
2 read a request from the client
3 serve the request and reply
4 if finished with the client, close s and

terminate; otherwise, repeat from 2
3 do not close slave socket

c
lie

n
ts

 b
e
in

g
 s

e
rv

e
d

n
e
w

c
lie

n
ts

Child

thread

Child

thread

Child

thread

Parent

thread connect
requests

(sole) server
process

c
o
m

m
u
n
ic

a
te

Threads (S. D. Bruda) CS 464/564, Fall 2023 5 / 16

COORDINATION AND SYNCHRONIZATION

When working with processes, you generally need to wory about
exclusive access only when accessing the file system or pipes
When using threads memory space is also shared, so we also need to
worry about memory access
The following mechanisms for coordination and synchronization are
available:

Mutex: Used to provide exclusive access to a shared piece of data
More generally, you can use a mutex to implement a critical regions

Operation System call File lock equivlent
Initialization pthread_mutex_init opening the lock file
Enter critical region pthread_mutex_lock enter_critical

Release c. r. pthread_mutex_unlock exit_critical

Test for availability pthread_mutex_trylock

Threads (S. D. Bruda) CS 464/564, Fall 2023 6 / 16

COORDINATION AND SYNCHRONIZATION (CONT’D)

(Counting) semaphore: Like a mutex, but for n copies of the resource
Instead of: Use:
pthread_mutex_init sem_init

pthread_mutex_lock sem_wait

pthread_mutex_unlock sem_post

pthread_mutex_trylock sem_trywait

sem_getvalue

Include <semaphore.h> to work with semaphores

Condition variable = mutex + condition
A number of threads need to access a critical region (mutex)
Once the critical region is acquired, a certain condition has to be met before
going any further
While it waits for the condition, a thread gives up the mutex so that other
threads may proceed
Not using condition variables when appropriate will result in either
busy-waiting loops or poor responsiveness

Threads (S. D. Bruda) CS 464/564, Fall 2023 7 / 16

CONDITION VARIABLE (EXAMPLE)

Initialization:

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Wait for x to become larger than y:

pthread_mutex_lock(&mut);

while (x <= y) { pthread_cond_wait(&cond, &mut); }

/* mut is released while waiting */

/* mut is reacquired */

/* do stuff with x and y */

pthread_mutex_unlock(&mut);

When x becomes larger than y, the corresponding condition should be
signalled:

pthread_mutex_lock(&mut);

/* code that changes x and y */

if (x > y) pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&mut);

Threads (S. D. Bruda) CS 464/564, Fall 2023 8 / 16

CODING EXAMPLES: MUTEX

#include <pthread.h>

// lock1, lock2 MUST be global
pthread_mutex_t lock1;
pthread_mutex_t lock2;

pthread_mutex_init(&lock1,NULL);
pthread_mutex_init(&lock2,NULL);

// Do something involving two
// critical regions, i.e. use
// pthread_mutex_lock(&lock1)
// pthread_mutex_unlock(&lock1)
// pthread_mutex_lock(&lock2)
// pthread_mutex_unlock(&lock2)

// clean up:
// nothing to do
// (could call
// pthread_mutex_destroy
// except that it does nothing)

char lock1name[256], lock2name[256];
snprintf(lock1name,255,...);
snprintf(lock2name,255,...);
// lock1, lock2 can be local
int lock1 = open(lock1name,...);
int lock2 = open(lock2name,...);

if (lock1 == -1 || lock2 == -1) {
perror("Cannot create locks");
return 1; }

// Do something involving two
// critical regions, i.e. use
// enter_critical(lock1)
// exit_critical(lock1)
// enter_critical(lock2)
// exit_critical(lock2)

// clean up
close(lock1);
close(lock2);
unlink(lock1name);
unlink(lock2name);

Threads (S. D. Bruda) CS 464/564, Fall 2023 9 / 16

CODING EXAMPLES: MUTEX AND THREADS

pthread_mutex_t lock1, lock2;

void* do_lock (int n) {
pthread_mutex_lock(&lock1);
cout << "Thread " << n << " enters critical.\n";
sched_yield(); sleep(3);
pthread_mutex_unlock(&lock1);
cout << "Thread " << n << " exits critical.\n";
return NULL;

}
int main () {

pthread_mutex_init(&lock1,NULL);
pthread_mutex_init(&lock2,NULL);

pthread_t tt;
pthread_attr_t ta;
pthread_attr_init(&ta);
pthread_attr_setdetachstate(&ta,PTHREAD_CREATE_DETACHED);

pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)1);
pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)2);
pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)3);
sched_yield(); sleep(60);

}

Threads (S. D. Bruda) CS 464/564, Fall 2023 10 / 16

MUTEX AND DEADLOCKS

void* do_lock_21 (int n) { void* do_lock_12 (int n) {
pthread_mutex_lock(&lock2); pthread_mutex_lock(&lock1);
cout<<"Th. "<<n<<" enters 1.\n"; cout<<"Th. "<<n<<" enters 1.\n";
sched_yield(); sleep(1); sched_yield(); sleep(1);
pthread_mutex_lock(&lock1); pthread_mutex_lock(&lock2);
cout<<"Th. "<<n<<" enters 2.\n"; cout<<"Th. "<<n<<" enters 2.\n";
sched_yield(); sleep(3); sched_yield(); sleep(3);
pthread_mutex_unlock(&lock2); pthread_mutex_unlock(&lock2);
cout<<"Th. "<<n<<" exits 2.\n"; cout<<"Th. "<<n<<" exits 2.\n";
pthread_mutex_unlock(&lock1); pthread_mutex_unlock(&lock1);
cout<<"Th. "<<n<<" exits 1.\n"; cout<<"Th. "<<n<<" exits 1.\n";
return NULL; return NULL;

} }

int main () {
[... initialize mutexes, thread data ...]

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_12, (void*)1);

pthread_create(&tt, &ta,
(void* (*) (void*))do_lock_21, (void*)2);

sched_yield(); sleep(60);
}

Output:
Th. 1 enters 1.
Th. 2 enters 1.

. . . nothing happens in the

. . . next minute!

Threads (S. D. Bruda) CS 464/564, Fall 2023 11 / 16

TERMINATING A THREAD

A thread can terminate itself by returning from its main function of by
calling pthread_exit

A thread can cancel (i.e., terminate) other threads by sending a
cancellation request using pthread_cancel

Sole argument: the thread being cancelled (pthread_t)
Depending on its settings, the target thread can ignore the request, honor it
immediately, or defer it until it reaches a cancellation point

The following POSIX threads functions are cancellation points: pthread_join,
pthread_cond_wait, pthread_cond_timedwait, pthread_testcancel,
sem_wait, sigwait
All other POSIX threads functions are guaranteed not to be cancellation points
pthread_testcancel does nothing except testing for pending cancellation and
executing it if applicable

When the cancellation is honored the thread being cancelled behaves as if it
calls pthread_exit(PTHREAD_CANCELED)

Threads (S. D. Bruda) CS 464/564, Fall 2023 12 / 16

CANCELLATION POINTS

In addition to the cancellation points enumerated above, a number of
system calls (basically, all system calls that may block) are cancellation
points

And so are the library functions that use these system calls

Older implementations may not conform to this even if hey call
themselves POSIX compliant
Workaround:

Cancellation requests are transmitted to the target thread through signals
The signal will interrupt all blocking system calls, causing them to return
immediately with the EINTR error
Using pthread_cancel immediately after a system call is thus safe and
acheives the desired effect
It is unclear what is the behaviour of newer implementations (feel free to
experiment)

Threads (S. D. Bruda) CS 464/564, Fall 2023 13 / 16

CANCELLATION STATE

pthread_setcancelstate changes the cancellation state for the calling
thread

That is, whether cancellation requests are ignored or not (possible state
values: PTHREAD_CANCEL_DISABLE, PTHREAD_CANCEL_ENABLE)
The old cancellation state is stored and can thus be restored (unless the
second argument is 0)
Prototype: pthread_setcancelstate(int state, int *oldstate);

pthread_setcanceltype changes the type of responses to cancellation
requests

Possible behaviour: asynchronous (immediate) or deferred cancellation
(PTHREAD_CANCEL_ASYNCHRONOUS, PTHREAD_CANCEL_DEFERRED)
The old cancellation type is stored and can thus be restored (unless the
second argument is 0)
Prototype: int pthread_setcanceltype(int type, int *oldtype);

A thread is created by default with cancellation enabled and deferred

Threads (S. D. Bruda) CS 464/564, Fall 2023 14 / 16

JOINING AND DETACHING

A thread can wait for the completion of other threads:
void* ret;

pthread_create(&tt, ...); ⇝ pthread_join(tt, &ret);

pthread_join suspends execution of the calling thread until the thread given
as argument terminates
the return value of the thread (PTHREAD_CANCELED if cancelled) is stored in
the second argument unless the second argument is 0
At most one thread can wait for the termination of any given thread

A thread can be waited upon (“joined”) only if it is attached
However, if a thread is attached it does not release any of its resources
unless a pthread_join is called on it

Similar with zombie processes
If you do not want/need to deal with “zombie threads” then you can set them
to be detached; otherwise you must call pthread_join on them

Threads (S. D. Bruda) CS 464/564, Fall 2023 15 / 16

MONITORING A SERVER

Gathering statistics on server usage is easy in a multithreaded
environment, because of the global variables that are accessible from all
the threads:

We build a structure with statistical data of interest
We create a monitor thread that will from time to time process the statistical
data and store the result (write it in a log file, etc.)
The other threads update this structure according to what they did
Since the structure is used by all the running threads, we have to put all the
accesses to it in critical regions

Threads (S. D. Bruda) CS 464/564, Fall 2023 16 / 16

