Threads

Stefan D. Bruda

CS 464/564, Fall 2023

POSIX THREADS

Threads (S. D. Bruda)

THREADS VS. PROCESSES

@ We have seen how to use concurrent processes, with one thread of
execution each
@ Concurrency can be also implemented using one process with multiple
threads of execution
o Multiple processes with multiple threads of execution each are of course
possible as well
@ Threads (sometimes called “light processes”) behave similar to
processes, in the sense that they execute concurrently
o However, threads share most of their memory space with each other,
including the process’ descriptor table
@ In Linux you can create something similar with threads (but considerably
more robust) using clone(2)
@ However, clone(2) is not portable (not even to other Unices), so the POSIX
standard is usually preferred
@ In Linux the POSIX threads are implemented as a relatively thin layer over
the clone(2) and related API

CS 464/564, Fall 2023 1/16

THREADS VS. PROCESSES

@ Linux threads follow the POSIX standard 1003.1, which is observed by
many other Unix systems

@ Features:

o Threads can be created at any time using the system call pthread_create
o Threads execute concurrently, and are preemptible (one thread cannot block
the CPU)

@ A thread can give up the CPU voluntarily by using the system call sched_yield
(also available for processes)

e Each thread has its own stack (local variables), but all threads in a process
share the rest of the address space (global variables, descriptor table, heap,

)

@ The threads API include functions for coordination and synchronization
(including mechanisms to implement critical regions in memory, i.e., without
file locks)

@ A program that uses threads must include <pthread.h> and must be
linked with the library pthread, i.e.,
g++ -lpthread -o tserv tserv.o tcp-utils.o
g++ -pthread -o tserv tserv.o tcp-utils.o

Threads (S. D. Bruda) CS 464/564, Fall 2023 2/16

Advantages of threads:
@ Efficiency: context switching between threads is generally (though not
always) faster than between processes

@ The existence of shared memory: threads can communicate between
each other using the shared memory, as opposed to processes

o The implementation of critical regions does not need to use locks on files
e Monitoring is also easy to implement
Disadvantages of threads:

@ The existence of shared memory: two threads may interfere with each
other when both try to access shared objects (e.g., the same global
variable) = interference

@ Lack of robustness: if a thread performs an illegal operation (e.g., a
segmentation violation) the whole process is terminated

@ System calls may not be thread safe

@ Annoyingly, thread safety is not always documented
o If in doubt, put the respective system call in a critical region (discussed later)

Threads (S. D. Bruda) CS 464/564, Fall 2023 3/16

CAVEATS

@ Do not abuse critical regions
@ You have a very good chance to unboundedly decrease response time
o In particular, a read/recv in a critical region can easily deadlock a server (so
don’t ever do it!)
o Critical regions and signal handlers do not mix well
@ File and socket descriptors are shared
@ Once a thread opens a file/socket, it is opened for all the threads
o Most importantly, once a thread closes a descriptor, no other thread can
access that descriptor successfully
@ If athread calls exit then the whole process terminates

o A thread terminates itself when its top-level function returns, or explicitly by
calling pthread_exit

Threads (S. D. Bruda) CS 464/564, Fall 2023 4/ 16

COORDINATION AND SYNCHRONIZATION

@ When working with processes, you generally need to wory about
exclusive access only when accessing the file system or pipes

@ When using threads memory space is also shared, so we also need to
worry about memory access

@ The following mechanisms for coordination and synchronization are
available:

@ Mutex: Used to provide exclusive access to a shared piece of data
o More generally, you can use a mutex to implement a critical regions

Operation System call File lock equivlent
Initialization pthread_mutex_init opening the lock file
Enter critical region pthread_mutex_lock enter_critical
Release c. . pthread_mutex_unlock exit_critical

Test for availability =~ pthread_mutex_trylock

Threads (S. D. Bruda) CS 464/564, Fall 2023 6/ 16

CONCURRENT SERVERS, REVISITED

(sole) server
. . . process
@ create, bind and place in passive A

mode the master socket

O repeat forever: child). — | o
@ accept the next connection request 7lthread) . T
from the socket and create a new P 5 g
slave socket s for the connection. P ‘ 3 e
@ pthread_create; in the new thread: f - ; = Q
| Child 1 8 —_— »
@ do not close master socket 7|thread) T ‘2"
@ read a request from the client } - ‘ P o

© serve the request and reply } Child -

-~ (thread

@ if finished with the client, close s and

terminate; otherwise, repeat from 2 ‘ o

Parent| - @ @

© do not close slave socket 3. .; connect & =
EEREIEEIER ety requests

Threads (S. D. Bruda) CS 464/564, Fall 2023 5/ 16

COORDINATION AND SYNCHRONIZATION (CONT'D) -

@ (Counting) semaphore: Like a mutex, but for n copies of the resource

Instead of: Use:

pthread_mutex_init sem_init
pthread_mutex_lock sem_wait
pthread_mutex_unlock sem_post

pthread_mutex_trylock sem_trywait
sem_getvalue

@ Include <semaphore.h> to work with semaphores

@ Condition variable = mutex + condition

o A number of threads need to access a critical region (mutex)

@ Once the critical region is acquired, a certain condition has to be met before
going any further

o While it waits for the condition, a thread gives up the mutex so that other
threads may proceed

o Not using condition variables when appropriate will result in either
busy-waiting loops or poor responsiveness

Threads (S. D. Bruda) CS 464/564, Fall 2023 7/16

CONDITION VARIABLE (EXAMPLE)

@ Initialization:

pthread_mutex_t mut
pthread_cond_t cond

PTHREAD_MUTEX_INITIALIZER;
PTHREAD_COND_INITIALIZER;

CODING EXAMPLES: MUTEX

#include <pthread.h>

// lockl, lock2 MUST be global

char locklname[256], lock2name[256];

snprintf (lockiname,255,...);
snprintf (lock2name,255,...);
// lockl, lock2 can be local

. . pthread_mutex_t lockl; int lockl = open(locklname,...);
@ Wait for x to become larger than y: pthread_mutex_t lock2; int lock2 = open(lock2name,...);
pthread_mutex_lock(&mut) ; pthread_mutex_init (&lock1,NULL); if (lockl == -1 || lock2 == -1) {

while (x <= y) { pthread_cond_wait(&cond, &mut);

}

/* mut is released while waiting */
/* mut is reacquired */
/* do stuff with x and y */
pthread_mutex_unlock(&mut) ;

@ When x becomes larger than y, the corresponding condition should be

pthread_mutex_init(&lock2,NULL) ;

// Do something involving two

// critical regions, i.e. use

// pthread_mutex_lock(&lockl)
// pthread_mutex_unlock(&lockl)
// pthread_mutex_lock(&lock2)
// pthread_mutex_unlock(&lock2)

perror("Cannot create locks");
return 1;

// Do something involving two

// critical regions, i.e. use
enter_critical (lockl)

// exit_critical(lockl)

// enter_critical(lock2)

// exit_critical(lock2)

. . // clean up: // clean up
signalled: 5; r(xothing to do close(lockl);
could call close(lock2);
pthread_mutex_lock(&mut) 5 // pthread_mutex_destroy unlink(lockliname) ;
/* code that changes x and y */ // except that it does nothing) unlink(lock2nane);

if (x > y) pthread_cond_broadcast(&cond) ;
pthread_mutex_unlock (&mut) ;

Threads (S. D. Bruda) CS 464/564, Fall 2023 8/ 16 Threads (S. D. Bruda)

CS 464/564, Fall 2023 9/ 16

L£:=8.)

- l] MUTEX AND DEADLOCKS

CODING EXAMPLES: MUTEX AND THREADS

pthread_mutex_t lockl, lock2;

void* do_lock (int n) {
pthread_mutex_lock(&lockl) ;

cout << "Thread " << n << " enters critical.\n";

sched_yield(); sleep(3);
pthread_mutex_unlock(&lockl) ;

cout << "Thread " << n << " exits critical.\n";

return NULL;

int main () {

pthread_mutex_init (&lockl,NULL);

void* do_lock_21 (int n) {
pthread_mutex_lock(&lock2) ;
cout<<"Th. "<<n<<" enters 1.\n";
sched_yield(); sleep(1);
pthread_mutex_lock(&lockl) ;
cout<<"Th. "<<n<<" enters 2.\n";
sched_yield(); sleep(3);
pthread_mutex_unlock(&lock2) ;
cout<<"Th. "<<n<<" exits 2.\n";
pthread_mutex_unlock(&lockl);
cout<<"Th. "<<n<<" exits 1.\n";
return NULL;

void* do_lock_12 (int n) {
pthread_mutex_lock(&lockl) ;

cout<<"Th. "<<n<<" enters 1.\n";

sched_yield(); sleep(1);
pthread_mutex_lock(&lock2) ;

cout<<"Th. "<<n<<" enters 2.\n";

sched_yield(); sleep(3);
pthread_mutex_unlock(&lock2) ;

cout<<"Th. "<<n<<" exits 2.\n";

pthread_mutex_unlock(&lockl) ;

cout<<"Th. "<<n<<" exits 1.\n";

return NULL;

pthread_mutex_init(&lock2,NULL); } }

pthread_t tt;

pthread_attr_t ta; int main () {

pthread_attr_init (&ta); [... initialize mutexes, thread data ...]

pthread_attr_setdetachstate(&ta,PTHREAD_CREATE_DETACHED); Chﬂpur
Th. 1 enters 1.
Th. 2 enters 1.

pthread_create(&tt, &ta,

(void* (%) (void*))do_lock_12, (void*)1);
pthread_create(&tt, &ta,

(void* (*) (void*))do_lock_21, (void*)2);
sched_yield(); sleep(60);

pthread_create(&tt, &ta, (void* (*) (voidx))do_lock, (voidx)1);
pthread_create(&tt, &ta, (void* (*) (voidx))do_lock, (voidx)2);
pthread_create(&tt, &ta, (void* (*) (void*))do_lock, (void*)3);
sched_yield(); sleep(60); ...nothing happens in the

next minute!

Threads (S. D. Bruda) CS 464/564, Fall 2023 10/16 Threads (S. D. Bruda) CS 464/564, Fall 2023 11/16

Threads (S. D. Bruda)

Threads (S. D. Bruda)

TERMINATING A THREAD

CANCELLATION POINTS

@ A thread can terminate itself by returning from its main function of by
calling pthread_exit

@ A thread can cancel (i.e., terminate) other threads by sending a
cancellation request using pthread_cancel

o Sole argument: the thread being cancelled (pthread_t)
o Depending on its settings, the target thread can ignore the request, honor it
immediately, or defer it until it reaches a cancellation point
@ The following POSIX threads functions are cancellation points: pthread_join,
pthread_cond_wait, pthread_cond_timedwait, pthread_testcancel,
sem_wait, sigwait
@ All other POSIX threads functions are guaranteed not to be cancellation points
@ pthread_testcancel does nothing except testing for pending cancellation and
executing it if applicable

@ When the cancellation is honored the thread being cancelled behaves as if it
calls pthread_exit (PTHREAD_CANCELED)

CANCELLATION STATE

@ pthread_setcancelstate changes the cancellation state for the calling
thread

e That is, whether cancellation requests are ignored or not (possible state
values: PTHREAD_CANCEL_DISABLE, PTHREAD_CANCEL_ENABLE)

@ The old cancellation state is stored and can thus be restored (unless the
second argument is 0)

o Prototype: pthread_setcancelstate(int state, int *oldstate);

@ pthread_setcanceltype changes the type of responses to cancellation
requests

@ Possible behaviour: asynchronous (immediate) or deferred cancellation
(PTHREAD_CANCEL_ASYNCHRONOUS, PTHREAD_CANCEL_DEFERRED)

@ The old cancellation type is stored and can thus be restored (unless the
second argument is 0)

o Prototype: int pthread_setcanceltype(int type, int *oldtype);

@ Athread is created by default with cancellation enabled and deferred

CS 464/564, Fall 2023 12/16 Threads (S. D. Bruda)

CS 464/564, Fall 2023 14 /16

@ In addition to the cancellation points enumerated above, a number of
system calls (basically, all system calls that may block) are cancellation
points

@ And so are the library functions that use these system calls

@ Older implementations may not conform to this even if hey call
themselves POSIX compliant
@ Workaround:
o Cancellation requests are transmitted to the target thread through signals
o The signal will interrupt all blocking system calls, causing them to return
immediately with the EINTR error
@ Using pthread_cancel immediately after a system call is thus safe and
acheives the desired effect
e Itis unclear what is the behaviour of newer implementations (feel free to
experiment)

CS 464/564, Fall 2023 13/16

JOINING AND DETACHING

@ A thread can wait for the completion of other threads:
void* ret;
pthread_create(&tt, ...); ~» pthread_join(tt, &ret);

o pthread_join suspends execution of the calling thread until the thread given
as argument terminates

o the return value of the thread (PTHREAD_CANCELED if cancelled) is stored in
the second argument unless the second argument is 0

o At most one thread can wait for the termination of any given thread

@ A thread can be waited upon (“joined”) only if it is attached
@ However, if a thread is attached it does not release any of its resources
unless a pthread_join is called on it

o Similar with zombie processes
o If you do not want/need to deal with “zombie threads” then you can set them
to be detached; otherwise you must call pthread_join on them

Threads (S. D. Bruda) CS 464/564, Fall 2023 15/16

MONITORING A SERVER

@ Gathering statistics on server usage is easy in a multithreaded
environment, because of the global variables that are accessible from all
the threads:

o We build a structure with statistical data of interest

o We create a monitor thread that will from time to time process the statistical
data and store the result (write it in a log file, etc.)

e The other threads update this structure according to what they did

@ Since the structure is used by all the running threads, we have to put all the
accesses to it in critical regions

Threads (S. D. Bruda) CS 464/564, Fall 2023 16/ 16

