
Managing concurrency

Stefan D. Bruda

CS 464/564, Fall 2023

CONCURRENT VS ITERATIVE, TAKE 2

What we did up to this point: when we needed a new thread of control,
we just created a new thread or process = demand-driven concurrency

It may look like the right (i.e. optimal) thing to do, but this is not always the
case
Sometimes, we are better off if we use an iterative server (sic!)

When is iterative better? When the responses to queries are processed
very quickly

In this case, concurrency just adds overhead

0 p c 2p 2c 2c+p

C
o
n
c
u
rr

e
n
t

Iterative

Time

Create slave 2Create slave 1

Process req. 1 Process req. 2

Process req. 2

Process req. 1

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 1 / 8

MANAGING CONCURRENCY

In the general case though, concurrency does yield better performance
We use as concurrency measure the number n of simultaneous threads
that execute at a given time (be they in the same process or in different
processes)
Still, demand-driven concurrency is not necessarily the best choice

For one thing, n can grow unboundedly; anything that grows without bounds
is bad
In particular, if we have tons of threads, we end up spending most of the
time doing context switching (rather than useful work)

Idea #1: limit the number of threads that can run simultaneously to a fixed
limit nmax (how?)

When using threads, we can use a semaphore h
we initialize h with nmax

each time we create a thread we wait on h
each time we return from a thread we post h

When using processes we can simulate a semaphore by using a file holding
two numbers (maximum + current) accessed within a critical region

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 2 / 8

MANAGING CONCURRENCY (CONT’D)

Idea #2 (variation on #1): not only we limit the number of threads that run
concurrently, we also preallocate them

We get a bunch of threads (or processes) which do nothing at the beginning
If a client requests connection and we have any idle thread/process, we put
it to work
If we do not have any idle thread/process, the incoming client will wait in the
TCP queue until something becomes available
How do we put a thread or process in this waiting state? More precisely, how
do we activate a sleeping thread/process when we need it?

We share the master socket (we put the call to accept inside the child threads)
A thread is idle when it blocks on the call to accept

Once a client comes, the quickest idle thread will accept the connection and this
will wake it up
The other idle threads will continue to block on accept

The thread just woken up will then handle the client
Once the client finishes the interaction, the handling thread will go back to
accepting new connections, and will block on accept in the case that no clients
are asking for a connection
After creating the child threads, the master thread does not need to do anything
else

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 3 / 8



ADVANTAGES OF PREALLOCATION

The main advantage: We reduce the system overhead, and thus we
increase efficiency, response time, you name it

Process/thread creation does take some time, so we spend all of this time
when the server starts (once a week in the middle of the night maybe)
instead of spending bits of it each time a client connects
We practically never spend time to destroy processes or threads!
A good operating system will know when a thread is idle and will not select it
for running on the CPU; so in a good OS we do not even do much context
switching if we do not need to

Beside reducing overhead, we also set a bound to the maximum number
of threads of execution running concurrently (always a good thing)

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 4 / 8

CAVEATS IN PREALLOCATION

Bad news: there are caveats
Good news: there are ways around them (basically, careful programming
solves them all)
Main problem: memory leaks

A memory leak happens when you allocate memory dynamically using
malloc/new but fail to deallocate (all of) it when no longer needed (using
free/delete)
Memory leaks can blow any program (system!) to pieces, but they become
really critical in preallocated threads
Indeed, the life of preallocated threads if very long, and so they have a lot of
time to accumulate leaked memory
In a heavy traffic server, it takes days (at best) to allocate enough virtual
memory to render the system unusable
So be careful about memory leaks!

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 5 / 8

CAVEATS IN PREALLOCATION (CONT’D)

Possible problem on non-Linux systems: concurrent calls to accept
In Linux, concurrent calls to accept are guaranteed to be handled properly
and efficiently
Other Unices do not necessarily offer such guarantees
Concurrent calls to accept may not be handled at all: the first call blocks, the
others return an error
Even when handled correctly, such handling may be awkward and inefficient

For instance, it may be the case that when a request arrives all the threads
blocked on accept are unblocked
All but one get back into the blocked state, but meantime the CPU context
switches between them a whole lot

Solution: avoid simultaneous blocks to accept by surrounding all of these
system calls into critical regions

This guarantees that only one thread will reach the accept call at any given time

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 6 / 8

DELAYED THREAD ALLOCATION

In idea #2 we introduced a difference between the time a connection
request arrives and the time when a new thread is created

The time difference happens to be negative (we create threads before we
receive any connection request)
A positive time difference is just as possible (and useful)

Idea #3 is to use delayed thread allocation
Remember, thread allocation consumes resources (both memory and CPU
time)
So why create a thread when we do not need it?
We better begin with an iterative server (no resources consumed in
allocating threads)
If the client is served quickly enough, we do not create anything; the (sole)
server thread serves the request and only then moves to another client
We have thus an iterative server to begin with
Until the serving time passes a fixed threshold, time at which the server
creates a new thread and passes to it the task at hand (of serving the
current request)

The master thread then goes to serve another client in the same manner

We end up with a server that is either iterative or concurrent, the choice
being dynamic (can vary from one request to the next)

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 7 / 8



THE BEST OF BOTH WORLDS

Preallocation and delayed allocation can be combined: Create new
threads if necessary (using delayed allocation), but do not do this if the
number of concurrent threads exceeds a given nmax

Of course, nothing prevents the dynamically allocated threads to be
preallocated
In practice creating threads or processes is cheap enough so that
delayed thread allocation is not used very frequently

Managing concurrency (S. D. Bruda) CS 464/564, Fall 2023 8 / 8


