
Secure programming

Stefan D. Bruda

CS 464/564, Fall 2023

SECURITY

Why bother at all?
The Internet is not a secure place. Many people try to crack systems, and
the network infrastructure is inherently insecure

How secure is secure?
No computer can be ever totally secure
Security needs vary from case to case (e.g., your home computer vs. your
bank’s)
The more secure your system is, the more intrusive security becomes. You
need to decide when your system will still be usable, and yet secure for your
purposes

But wait, what does this have to do with this course?
Just an introduction to the matter at hand
The point is, your servers should lay as good a basis as possible for secure
computers
If your server is crackable, then so is the machine it runs on; even if the
server is installed improperly, the risks should be minimized

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 1 / 17

SECURITY ISSUES

Risks: An intruder may subvert the server, e.g., make it read or write files,
delete critical data, or execute arbitrary code
Threats: Several types of intruders:

The Curious wants to see what you have in there
The Malicious wants to bring down your system
The High-Profile Intruder cracks your system for boasting rights
The Borrowers wants to use resources you pay for (e.g., bandwidth)
The Leapfrogger wants to use your system to attack others
The Competition

Vulnerabilities: what are the security holes in the system
This is where you, the programmer of servers, come in: to minimize these
If the system is full of vulnerabilities it will eventually go down (and bring your
server down too), but do not let your server be the cause

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 2 / 17

UNPRIVILEGED SERVERS

Vulnerabilities are greatly minimized if your server runs unprivileged
A program inherits not only the open descriptors, but also the user it
belongs to
However, a server is usually launched by the init system, which is run for
obvious reasons as root (user ID 0)
Root privileges are also needed at startup
Once the startup is complete very few servers need root privileges
Therefore as soon as you can you should drop root privileges, i.e.,
change the user ID your program runs under to something else than 0:

setuid(non-privileged-uid);
Group privileges are also important, and thus they should be dropped too:

setgid(non-privileged-gid);
This is arguably the biggest security improvement of them all
Typically, servers launch as root but then switch to special user IDs,
created just for them and which have the minimum amount of privileges

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 3 / 17



CONFINED SERVERS

Servers should change the current working directory to a safe directory
Even so, nothing prevents them to write to any other directory: all they
have to do is to provide full paths to the files they want to access
Sometimes you cannot do anything about it (whenever the server must
access files all over the place)
But sometimes your server needs files that are all located in a specific
subtree of your file system
If this is the case, then you should confine your server to that subtree

chroot(dir);
The effect: dir becomes the root directory of your server
For instance, after your program does chroot("/var/lib/shfd"), it will
view the file "/var/lib/shfd/shfd.log" as "/shfd.log"

A file which is someplace else (say, "/etc/passwd") is simply inaccessible

Once you go into a “chroot jail” you can not get back (not even as root)
Arguably the second biggest security improvement, but difficult to
implement

All the shared libraries necessary for running the program must be available
in the chroot jail

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 4 / 17

WHY RUN AS ROOT IN THE FIRST PLACE?

Some system calls have no effect if run unprivileged; they include
chroot, setgid, and setuid

A non-root program cannot bind to ports below 1024
So your server must run as root at the very beginning, just to issue these
calls and/or open its ports
As a consequence, once your server drops root privileges, it cannot get
them back
In other words, the proper sequence of calls is:

chdir("/var/lib/shfd");

chroot("/var/lib/shfd");

// open master socket on port below 1024

setgid(99);

setuid(99);

Of course, there are cases when you have to run your server as root all
the way (and perhaps also outside any chroot jail)

Then the potential of harm is huge
You should be extra careful when programming such a server

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 5 / 17

VALIDATE ALL INPUT

Some inputs are from untrustable users, so those inputs must be
validated (filtered) before being used

You should determine what is legal and reject anything that does not match
that definition
Example of illegal strings: "..", anything starting with /, control characters
(too small ASCII values) and/or characters with the high bit set (too large
ASCII values)
But validate, do not do the reverse (do not identify what is illegal and write
code to reject those cases)!

Strings: identify the legal characters or legal patterns and reject anything not
matching that form

A character sequence may have special meaning to the program’s internal
storage format (e.g., a slash in the name of a file); check for these

Numbers: limit all numbers to the minimum (often zero) and maximum
allowed values

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 6 / 17

VALIDATE ALL INPUT (CONT’D)

Input includes but is not limited to command line arguments, environment
variables, and things received from a client

Use text input as much as you can (easier to check)

Limit the maximum character length (and minimum length if appropriate)
Be sure to not lose control when such lengths are exceeded

Tests should usually be centralized in one place so that the validity tests
can be easily examined for correctness later
Make sure that your validity test is actually correct

This is particularly a problem when checking input that will be used by
another program
These tests may have subtle errors, producing the deputy problem (the
checking program makes different assumptions than the program that
actually uses the data)

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 7 / 17



VALIDATE ALL INPUT (CONT’D)

While parsing user input, it is a good idea to temporarily drop all
privileges, or even create separate processes

This is especially true if the parsing task is complex, or if the programming
language does not protect against buffer overflows (e.g., C and C++)

Validate command line arguments
Attackers can send just about any kind of data through a command line
(through calls such as execve)
You must definitely validate the command line inputs

In particular, never trust the name of the program reported by argv[0] (an
attacker can set it to any value including NULL)

Validate file descriptors
Do not assume that any file descriptor is opened and points to anything in
particular
Better close them all and reopen what is needed (a matter of resource
management but also of security!)

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 8 / 17

VALIDATE ALL INPUT (CONT’D)

Validate file names
Reject “globing” characters (*, ?) whenever possible

If you must glob, do so in a separate process, with limits on resources
Filter dangerous file names, including:

Names beginning with a dash
Names with control characters (especially newlines) in them
Names containing spaces
Names containing characters with special meaning to the system and the
programming language (e.g., <, ", ;, etc.)

Validate file content
If a program takes directions from a file, the file must be considered suspect
unless only trusted users can control its content (meaning: untrusted users
cannot modify the file, its directory, or any of its ancestor directories)
If the file is suspect, make sure that the inputs from the file are protected as
described in other places (taking data from a file is not an excuse)

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 9 / 17

VALIDATE ALL INPUT (CONT’D)

http://xkcd.com/327

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 10 / 17

AVOID BUFFER OVERFLOWS

This is a very common and very dangerous security flaw
When allocating data (e.g., an array), validate the size

It should be positive

When accessing data in an array, validate the index
It should be within the array size, and positive

When copying stuff, check for bounds and for the format of the output;
Especially important for strings
Use “safe” functions (e.g., snprintf instead of sprintf, strncpy instead of
strcpy)
But do not forget that you may thus loose the terminating null byte!

Avoid dangling pointers at all cost
Set deleted pointers to 0, and check before accessing the content of any
pointer

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 11 / 17



THE PERRILS OF BUFFER OVERFLOW: A REAL-
WORLD EXAMPLE

Sendmail debug flags: -dflag,value
“sendmail -d8,100 . . . ” sets flag number 8 to value 100

Name of config file (/etc/sendmail.cf) also stored in memory (before
the flags)

/etc/sendmail.cf gives the path to /bin/mail

Sendmail checked for maximum flag numbers, but not for positiveness
Integer larger than 231 considered negative by C on 32-bit machines
sendmail -d4294967269,117 -d4294967270,110 -d4294967271,113

changes “etc” to “tmp” in the name of the config file

/ e t c / s e n d m a i l . c f \0... ... ...

t m p

flag0

Attacker then creates /tmp/sendmail.cf which claims local mailer is
/bin/sh

debug call gives root shell!

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 12 / 17

RACE CONDITIONS

Simple code gone wrong:
void incr() {

x++;

}

Three instructions (load x, increment register, store result), possibly
executed in an interleaved manner → fails when called from multiple threads
Result depends on the interleaving = race condition

Use synchronization primitives judiciously
But also keep in mind that abusing critical regions can unboundedly
decrease response time
Choose carefulness instead of critical regions as much as possible, but
do choose critical regions whenever applicable
Race conditions can also happen because of signal handlers!

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 13 / 17

RACE CONDITIONS CAN BE VERY SUBTLE

Innocent code (typical producer-consumer system):
Blue thread Red thread
x = ...; while (!done) {}

done = true; ... = x;

. . . Except that the compiler might obligingly break it for you!
Indeed, any optimization flag passed to the compiler might cause it to notice
that done is not modified inside the loop
So the red thread might become tmp = done; while (!tmp) {}

. . . or even tmp = done; if (!tmp) while (true) {}

Even if you don’t pass any optimization flags the hardware might still
optimize
This rather than CPU load is the reason why busy loops in user space are
evil

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 14 / 17

RACE CONDITIONS (CONT’D)

Many system calls are not thread safe (also called reentrant), that is, they
can lead to race conditions when used concurrently
Many such system calls have a “reentrant” variant (identified by the _r
suffix), which is

Thread safe, but also
Harder to use and usually less efficient

Use the reentrant variant whenever concurrent calls are possible, but use
the normal variant when race conditions cannot happen

Tokenize a string which is a local (stack) variable → use strtok

Tokenize a string which is a global or heap variable → use strtok_r

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 15 / 17



FOLLOW GOOD PRINCIPLES FOR SECURE PROGRAMS

Least privilege. Each user and program should operate using the fewest
privileges possible, thus limiting the damage from an accident, error, or attack
Economy of mechanism/Simplicity. The design of the protection system should
be simple and small as possible; interfaces should be minimal, narrow, and
non-bypassable; trust should be minimized
Open design. The protection mechanism must not depend on attacker ignorance;
the mechanism should be public, depending on the secrecy of relatively few (and
easily changeable) items like passwords or private keys
Complete mediation. Every access attempt must be checked; position the
mechanism so it cannot be subverted; for instance, in a client-server model the
server must do all access checking
Fail-safe defaults. The default should be denial of service
Separation of privilege. Ideally, access should depend on more than one
condition, so that defeating one protection system won’t enable complete access
Least common mechanism. Minimize the amount and use of shared mechanisms
(e.g. use of the /tmp or /var/tmp directories)
Psychological acceptability/Easy to use. The human interface must be designed
for ease of use so users will routinely and automatically use the protection
mechanisms correctly

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 16 / 17

ONLY AN OVERVIEW

This is just a brief incursion into security issues
Other things that have strong impact on security:

Environment variables (they are very dangerous)
Random number generators
Etc.

For more details about secure programming, take a look at
http://www.faqs.org/docs/Linux-HOWTO/Secure-Programs-HOWTO.html

and the references therein
An instructive tutorial on buffer overflow exploitation:

http://www.cs.wright.edu/~tkprasad/courses/cs781/alephOne.html

Secure programming (S. D. Bruda) CS 464/564, Fall 2023 17 / 17


