CS 467/567: NP-complete problems

Stefan D. Bruda

Winter 2023

- Abstract problem: relation Q over the set I of problem instances and the set S of problem solutions: Q ⊆ I × S
 - Complexity theory deals with decision problems or languages ($S = \{0, 1\}$)
 - Technically a language is a set of strings
 - A problem $Q \subseteq I \times \{0, 1\}$ ca be rewritten as the language (set) $L(Q) = \{w \in I : (w, 1) \in Q\}$
 - Many abstract problems are optimization problems instead; however, we can
 usually restate an optimization problem as a decision problem which require
 the same amount of resources to solve

- Abstract problem: relation Q over the set I of problem instances and the set S of problem solutions: Q ⊆ I × S
 - Complexity theory deals with decision problems or languages ($S = \{0, 1\}$)
 - Technically a language is a set of strings
 - A problem $Q \subseteq I \times \{0, 1\}$ ca be rewritten as the language (set) $L(Q) = \{w \in I : (w, 1) \in Q\}$
 - Many abstract problems are optimization problems instead; however, we can
 usually restate an optimization problem as a decision problem which require
 the same amount of resources to solve
- Concrete problem: an abstract decision problem with I = {0, 1}*
 - Abstract problem mapped on concrete problem using an encoding $e: I \rightarrow \{0, 1\}^*$
 - $Q \subseteq I \times \{0,1\}$ mapped to the concrete problem $e(Q) \subseteq e(I) \times \{0,1\}$
 - Encodings will not affect the performance of an algorithm as long as they are polynomially related
- An algorithm solves a concrete problem in time O(T(n)) whenever the algorithm produces in O(T(n)) time a solution for any problem instance *i* with |i| = n

- Complexity theory analyzes problems from the perspective of how many resources (e.g., time, storage) are necessary to solve them
 - Given some abstract problem that requires certain resource (time) bounds to solve, it is generally easy to find a language that requires the same resource bounds to decide
 - Sometime (but not always) finding an algorithm for deciding the language immediately implies an algorithm for solving the problem

- Complexity theory analyzes problems from the perspective of how many resources (e.g., time, storage) are necessary to solve them
 - Given some abstract problem that requires certain resource (time) bounds to solve, it is generally easy to find a language that requires the same resource bounds to decide
 - Sometime (but not always) finding an algorithm for deciding the language immediately implies an algorithm for solving the problem

• Traveling salesman (TSP): Given $n \ge 2$, a matrix $(d_{ii})_{1 \le i, i \le n}$ with $d_{ii} > 0$ and $d_{ii} = 0$, find a permutation π of $\{1, 2, ..., n\}$ such that $c(\pi)$, the cost of π is minimal, where $c(\pi) = d_{\pi_1\pi_2} + d_{\pi_2\pi_3} + \cdots + d_{\pi_{n-1}\pi_n} + d_{\pi_n\pi_1}$

- TSP the language (take 1): $\{((d_{ij})_{1 \le i,j \le n}, B) : n \ge 2, B \ge 0, \text{ there exists a}\}$ permutation π such that $c(\pi) \leq B$
- TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs that have a (Hamiltonian) cycle that goes through all the vertices exactly once
- Note in passing: A cycle that uses all the edges exactly once is Eulerian; a graph G is Eulerian iff

- There is a path between any two vertices that are not isolated, and
 - Every vertex has an in-degree equal to its out-degree

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph G = (V, E), find the maximal set $C \subseteq V$ such that $\forall v_i, v_j \in C : (v_i, v_j) \in E$ (*C* is a clique of *G*)
 - Clique, the language: {(G = (V, E), K) : K ≥ 2 : there exists a clique C of V such that |C| ≥ K}

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph G = (V, E), find the maximal set $C \subseteq V$ such that $\forall v_i, v_i \in C : (v_i, v_i) \in E$ (*C* is a clique of *G*)
 - Clique, the language: {(G = (V, E), K) : K ≥ 2 : there exists a clique C of V such that |C| ≥ K}
- SAT: Fix a set of variables $X = \{x_1, x_2, \dots, x_n\}$ and let

$$\overline{X} = \{\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}\}$$

- An element of $X \cup \overline{X}$ is called a literal
- A formula (or set/conjunction of clauses) is $\alpha_1 \land \alpha_2 \land \cdots \land \alpha_m$ where

 $\alpha_i = x_{a_1} \lor x_{a_2} \lor \cdots \lor x_{a_k}, 1 \leqslant i \leqslant m, \text{ and } x_{a_i} \in X \cup \overline{X}$

- An interpretation (or truth assignment) is a function $I: X \to \{\top, \bot\}$
- A formula *F* is satisfiable iff there exists an interpretation under which *F* evaluates to *⊤*.
- SAT = {F : F is satisfiable }
- 2-SAT, 3-SAT are variants of SAT (with the number of literals in every clause restricted to a maximum of 2 and 3, respectively)

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph G = (V, E), find the maximal set $C \subseteq V$ such that $\forall v_i, v_i \in C : (v_i, v_i) \in E$ (*C* is a clique of *G*)
 - Clique, the language: {(G = (V, E), K) : K ≥ 2 : there exists a clique C of V such that |C| ≥ K}
- SAT: Fix a set of variables $X = \{x_1, x_2, \dots, x_n\}$ and let

$$\overline{X} = \{\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}\}$$

- An element of $X \cup \overline{X}$ is called a literal
- A formula (or set/conjunction of clauses) is $\alpha_1 \land \alpha_2 \land \cdots \land \alpha_m$ where

 $\alpha_i = x_{a_1} \lor x_{a_2} \lor \cdots \lor x_{a_k}, 1 \leqslant i \leqslant m, \text{ and } x_{a_i} \in X \cup \overline{X}$

- An interpretation (or truth assignment) is a function $I: X \to \{\top, \bot\}$
- A formula *F* is satisfiable iff there exists an interpretation under which *F* evaluates to *⊤*.
- SAT = {F : F is satisfiable }
- 2-SAT, 3-SAT are variants of SAT (with the number of literals in every clause restricted to a maximum of 2 and 3, respectively)
- Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF, 3-CNF) because the input formulae are written in conjunctive normal form

- Complexity class \mathcal{P} : the class of all the concrete problems that are solvable in polynomial time
 - Meaning that for any problem in \mathcal{P} there exists an algorithm that solves it in $O(n^k)$ time for some constant $k \ge 0$

- Complexity class \mathcal{P} : the class of all the concrete problems that are solvable in polynomial time
 - Meaning that for any problem in \mathcal{P} there exists an algorithm that solves it in $O(n^k)$ time for some constant $k \ge 0$
- For some $f : \mathbb{N} \to \mathbb{N}$, a Turing machine $M = (K, \Sigma, \Delta, s, \{h\})$ is *f*-time bounded iff for any $w \in \Sigma^*$: there is no configuration *C* such that $(s, \#w\underline{\#}) \vdash_M^{f(|w|)+1} C$
 - *M* is polynomially (time) bounded iff *M* is *p*-time bounded for some polynomial $p = O(n^k)$
 - Problem *p* is polynomially solvable iff there exists a deterministic polynomially bounded Turing machine that solves *p* ⇒ complexity class *P*
- \mathcal{P} (as well as all the other complexity classes) are defined based on worst-case analysis

• Complexity class \mathcal{NP} : the class of exactly all the problems solvable by nondeterministic, polynomially bounded Turing machines

- Complexity class \mathcal{NP} : the class of exactly all the problems solvable by nondeterministic, polynomially bounded Turing machines
- Verification algorithm: An algorithm A with two inputs: an ordinary problem instance x and a certificate y
 - A verifies the input x if there exists a certificate y such that A(x, y) = 1
 - The language verified by A is $L = \{x \in \{0, 1\}^* : \exists y \in \{0, 1\}^* : A(x, y) = 1\}$
 - A verifies L if for any string x ∈ L, there exists a certificate y that A can use to prove that x ∈ L; for any string x ∉ L there must be no certificate proving that x ∈ L
- Complexity class \mathcal{NP} : the class of all the problems verifiable in deterministic polynomial time
 - L∈ NP iff there exists a polynomial verification algorithm A and a constant c such that L = {x ∈ {0,1}* : ∃ y ∈ {0,1}* : |y| = O(|x|^c) ∧ A(x, y) = 1}
- Complexity class \mathcal{EXP} : exactly all the problems solvable by exponentially-bounded, deterministic algorithms
 - $\mathcal{P} \subseteq \mathcal{NP} \subseteq \mathcal{EXP}$

- A problem *Q* can be reduced to another problem *Q'* if any instance of *Q* can be "easily rephrased" as an instance of *Q'*
 - If Q reduces to Q' then Q is "not harder to solve" than Q'

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

- A problem *Q* can be reduced to another problem *Q*' if any instance of *Q* can be "easily rephrased" as an instance of *Q*'
 - If Q reduces to Q' then Q is "not harder to solve" than Q'
- Polynomial reduction: A language L₁ is polynomial-time reducible to a language L₂ (L₁ ≤_P L₂) iff there exists a polynomial algorithm F that computes the function f: {0,1}* → {0,1}* such that ∀x ∈ {0,1}* : x ∈ L₁ iff f(x) ∈ L₂
 - Polynomial reductions show that a problem is not harder to solve than another within a polynomial-time factor

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

- A problem *Q* can be reduced to another problem *Q*' if any instance of *Q* can be "easily rephrased" as an instance of *Q*'
 - If Q reduces to Q' then Q is "not harder to solve" than Q'
- Polynomial reduction: A language L_1 is polynomial-time reducible to a language L_2 ($L_1 \leq_P L_2$) iff there exists a polynomial algorithm F that computes the function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $\forall x \in \{0, 1\}^* : x \in L_1$ iff $f(x) \in L_2$
 - Polynomial reductions show that a problem is not harder to solve than another within a polynomial-time factor

Lemma

 $L_1 \leqslant_P L_2 \land L_2 \in P \Rightarrow L_1 \in P$

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

- A problem *Q* can be reduced to another problem *Q*' if any instance of *Q* can be "easily rephrased" as an instance of *Q*'
 - If Q reduces to Q' then Q is "not harder to solve" than Q'
- Polynomial reduction: A language L_1 is polynomial-time reducible to a language L_2 ($L_1 \leq_P L_2$) iff there exists a polynomial algorithm F that computes the function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $\forall x \in \{0, 1\}^* : x \in L_1$ iff $f(x) \in L_2$
 - Polynomial reductions show that a problem is not harder to solve than another within a polynomial-time factor

Lemma

$$L_1 \leqslant_P L_2 \land L_2 \in P \Rightarrow L_1 \in P$$

- A problem *L* is NP-hard iff $\forall L' \in \mathcal{NP} : L' \leq_P L$
- A problem *L* is NP-complete ($L \in NPC$) iff *L* is NP-hard and $L \in NP$

Theorem

Let L be some NP-complete problem; then $\mathcal{P} = \mathcal{NP}$ iff $L \in \mathcal{P}$

- Are there NP-complete problems at all?
 - SAT $\in \mathcal{NPC}$ (Stephen Cook, 1971)
- The first is the hard one: need to show that every problem in NP reduces to our problem
- Then in order to find other NP-complete problems all we need to do is to find problems such that some problem already known to be NP-complete reduces to them
 - This works because polynomial reductions are closed under composition = are transitive
- Then it is apparently easy to use the theorem stated earlier:

Let *L* be some NP-complete problem; then $\mathcal{P} = \mathcal{NP}$ iff $L \in \mathcal{P}$

BOUNDED TILING

- Tiling system: $\mathcal{D} = (D, d_0, H, V, s)$
 - D is a finite set of tiles
 - $d_0 \in D$ is the initial corner tile
 - $H, V \in D \times D$ are the horizontal and vertical tiling restrictions
 - s > 0 is a constant
- Tiling: $f : \mathbb{N}_s \times \mathbb{N}_s \to D$ such that
 - $f(0,0) = d_0$
 - $\forall 0 \le m < s, 0 \le n < s 1 : (f(m, n), f(m, n + 1)) \in V$
 - $\forall 0 \le m < s 1, 0 \le n < s : (f(m, n), f(m + 1, n)) \in H$
- The bounded tiling problem:
 - Given a tiling system \mathcal{D} , a positive integer *s* and an initial tiling $f_0 : \mathbb{N}_s \to D$
 - Find whether there exists a tiling function *f* that extends *f*₀
- Bounded tiling is in NP (why?)

BOUNDED TILING IS NP-COMPLETE

• Need to find reductions from all problems in \mathcal{NP} to bounded tiling

BOUNDED TILING IS NP-COMPLETE

- $\bullet\,$ Need to find reductions from all problems in \mathcal{NP} to bounded tiling
 - The only thing in common to all the \mathcal{NP} problems is that each of them is decided by a nondeterministic, polynomially bounded Turing machine
 - We therefore find a reduction from an arbitrary such a machine to bounded tiling

BOUNDED TILING IS NP-COMPLETE

- \bullet Need to find reductions from all problems in \mathcal{NP} to bounded tiling
 - The only thing in common to all the \mathcal{NP} problems is that each of them is decided by a nondeterministic, polynomially bounded Turing machine
 - We therefore find a reduction from an arbitrary such a machine to bounded tiling
- We find a tiling system such that each row in the tiling corresponds to one configuration of the given Turing machine

 $\forall (q, a, p, L) \in \Delta \land b \in \Sigma :$

Initial tiling:

$$\begin{array}{c}
(p,b) \\
Lp \\
b \\
\end{array}$$

SAT $\in \mathcal{NP}$

- Nondeterministically guess an interpretation then check that the interpretation satisfies the formula
- Both of these take linear time

SAT is NP-hard

- Reduction of bounded tiling to SAT
- Variables: *x_{nmd}* standing for "tile *d* is at position (*n*, *m*) in the tiling"
- Construct clauses such that $x_{nmd} = \top$ iff f(m, n) = d
- First specify that we have a function:
 - Each position has at least one tile: $\forall 0 \leq m, n \leq s : x_{mnd_1} \lor x_{mnd_2} \lor \cdots$
 - No more than one tile in a given position: $\forall 0 \le m, n \le s, d \ne d'$: $\overline{x_{mnd}} \lor \overline{x_{mnd'}}$
- Then specify the restrictions H and V:

•
$$(d, d') \in D^2 \setminus H \Rightarrow \overline{x_{mnd}} \lor \overline{x_{m+1nd'}}$$
 $(d, d') \in D^2 \setminus V \Rightarrow \overline{x_{mnd}} \lor \overline{x_{mn+1d'}}$

• 3-SAT is also NP-complete

• 3-SAT is NP-complete

- 3-SAT is NP-complete
 - Hint: any clause $x_1 \lor x_2 \lor \cdots \lor x_n$ is logically equivalent with $(x_1 \lor x_2 \lor x'_2) \land (\overline{x'_2} \lor x_3 \lor x'_3) \land (\overline{x'_3} \lor x_4 \lor x'_4) \land \cdots \land (\overline{x'_{n-2}} \lor x_{n-1} \lor x_n)$
- CLIQUE = { $(G = (V, E), k) : k \ge 2$: there exists a clique *C* of *V* with |C| = k}

Membership in \mathcal{NP} and 3-SAT \leq_P CLIQUE \Rightarrow CLIQUE $\in \mathcal{NPC}$

• 3-SAT is NP-complete

- Hint: any clause $x_1 \lor x_2 \lor \cdots \lor x_n$ is logically equivalent with
- $(X_1 \lor X_2 \lor X'_2) \land (\overline{X'_2} \lor X_3 \lor X'_3) \land (\overline{X'_3} \lor X_4 \lor X'_4) \land \cdots \land (\overline{X'_{n-2}} \lor X_{n-1} \lor X_n)$
- CLIQUE = { $(G = (V, E), k) : k \ge 2$: there exists a clique *C* of *V* with |C| = k}

Membership in \mathcal{NP} and 3-SAT \leq_P CLIQUE \Rightarrow CLIQUE $\in \mathcal{NPC}$

- Start from $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$, construct G = (V, E)
- Start with $V = \emptyset$ and $E = \emptyset$
- For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
- Add (v^r_i, v^s_j) to E whenever r ≠ s and l^r_i is not the negation of l^s_j (l^r_i is and l^s_j are consistent)

• 3-SAT is NP-complete

- Hint: any clause x₁ v x₂ v ··· x_n is logically equivalent with
 - $(\mathbf{X}_{1} \lor \mathbf{X}_{2} \lor \mathbf{X}_{2}') \land (\overline{\mathbf{X}_{2}'} \lor \mathbf{X}_{3} \lor \mathbf{X}_{3}') \land (\overline{\mathbf{X}_{3}'} \lor \mathbf{X}_{4} \lor \mathbf{X}_{4}') \land \cdots \land (\overline{\mathbf{X}_{n-2}'} \lor \mathbf{X}_{n-1} \lor \mathbf{X}_{n})$
- CLIQUE = { $(G = (V, E), k) : k \ge 2$: there exists a clique *C* of *V* with |C| = k}

Membership in \mathcal{NP} and 3-SAT \leq_P CLIQUE \Rightarrow CLIQUE $\in \mathcal{NPC}$

- Start from $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$, construct G = (V, E)
- Start with $V = \emptyset$ and $E = \emptyset$
- For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
- Add (v^r_i, v^s_j) to E whenever r ≠ s and l^r_i is not the negation of l^s_j (l^r_i is and l^s_j are consistent)
- Suppose that ϕ is satisfiable; then:
 - The interpretation that makes ϕ true makes at least one literal I_i^r per clause true
 - The vertex v_i^r is connected to all the other vertices v_j^s that make the other clauses true (these are all consistent with each other)
 - So the vertices v_i^r form a clique (of size k)

• 3-SAT is NP-complete

- Hint: any clause $x_1 \lor x_2 \lor \cdots \lor x_n$ is logically equivalent with
 - $(\mathbf{X}_1 \lor \mathbf{X}_2 \lor \mathbf{X}_2') \land (\overline{\mathbf{X}_2'} \lor \mathbf{X}_3 \lor \mathbf{X}_3') \land (\overline{\mathbf{X}_3'} \lor \mathbf{X}_4 \lor \mathbf{X}_4') \land \cdots \land (\overline{\mathbf{X}_{n-2}'} \lor \mathbf{X}_{n-1} \lor \mathbf{X}_n)$
- CLIQUE = { $(G = (V, E), k) : k \ge 2$: there exists a clique *C* of *V* with |C| = k}

Membership in \mathcal{NP} and 3-SAT $\leq_P \mathsf{CLIQUE} \Rightarrow \mathsf{CLIQUE} \in \mathcal{NPC}$

- Start from $\phi = C_1 \land C_2 \land \cdots \land C_k$, construct G = (V, E)
- Start with $V = \emptyset$ and $E = \emptyset$
- For each clause $C_r = l_1^r \vee l_2^r \vee l_3^r$ add vertices v_1^r , v_2^r , and v_3^r to V
- Add (v^r_i, v^s_j) to E whenever r ≠ s and l^r_i is not the negation of l^s_j (l^r_i is and l^s_j are consistent)
- Suppose that ϕ is satisfiable; then:
 - The interpretation that makes ϕ true makes at least one literal l_i^r per clause true
 - The vertex v^s_i is connected to all the other vertices v^s_j that make the other clauses true (these are all consistent with each other)
 - So the vertices v_i^r form a clique (of size k)
- Suppose that *G* has a clique *C* of size *k*; then:
 - C contains exactly one vertex per clause
 - Assigning \top to every literal l_i^r for which $v_i^r \in C$ is possible (all are consistent with each other)
 - $\bullet~$ The assignment makes ϕ true so ϕ is satisfiable

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k} Membership in \mathcal{NP} and CLIQUE \leq_P VERTEX-COVER \Rightarrow VERTEX-COVER $\in \mathcal{NPC}$

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k} Membership in \mathcal{NP} and CLIQUE \leq_P VERTEX-COVER \Rightarrow VERTEX-COVER $\in \mathcal{NPC}$
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of *G*)
 - Then $(G, k) \in \mathsf{CLIQUE}$ iff $(\overline{G}, |V| k) \in \mathsf{VERTEX}\text{-}\mathsf{COVER}$

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k} Membership in \mathcal{NP} and CLIQUE \leq_P VERTEX-COVER \Rightarrow VERTEX-COVER $\in \mathcal{NPC}$
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of *G*)
 - Then $(G, k) \in \mathsf{CLIQUE}$ iff $(\overline{G}, |V| k) \in \mathsf{VERTEX}\text{-}\mathsf{COVER}$
 - Suppose that G has a clique C, |C| = k; then:
 - $(u, v) \notin E$ means that u and v cannot be both in C
 - That is, $V \setminus C$ covers every edge $(u, v) \notin E$ that is, every vertex $(u, v) \in \overline{E}$
 - Therefore $V \setminus C$ is a vertex cover for \overline{G} (of size |V| k)

- A vertex cover of G = (V, E) is a set $V' \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V' \lor v \in V'$
- VERTEX-COVER = {(G = (V, E), k) : G has a vertex cover of size k} Membership in \mathcal{NP} and CLIQUE \leq_P VERTEX-COVER \Rightarrow VERTEX-COVER $\in \mathcal{NPC}$
 - Start from $(G = (V, E), k) \in CLIQUE$
 - Compute $\overline{G} = (V, \overline{E})$ where $\overline{E} = (V \times V) \setminus E$ (the complement of *G*)
 - Then $(G, k) \in \mathsf{CLIQUE}$ iff $(\overline{G}, |V| k) \in \mathsf{VERTEX}\text{-}\mathsf{COVER}$
 - Suppose that G has a clique C, |C| = k; then:
 - $(u, v) \notin E$ means that u and v cannot be both in C
 - That is, $V \setminus C$ covers every edge $(u, v) \notin E$ that is, every vertex $(u, v) \in \overline{E}$
 - Therefore $V \setminus C$ is a vertex cover for \overline{G} (of size |V| k)
 - Suppose that \overline{G} has a vertex cover V' with |V'| = |V| k; then:
 - $(u, v) \in \overline{E} \Rightarrow u \in V' \lor v \in V'$
 - Contrapositive: $u \notin V' \land v \notin V' \Rightarrow (u, v) \notin \overline{E}$
 - That is, $u \in V \setminus V' \land v \in V \setminus V' \Rightarrow (u, v) \in E$
 - So $V \setminus V'$ is a clique of *G* (or size *k*)

HAMILTONIAN CYCLE

- HAMILTONIAN-CYCLE = {G = (V, E) : G is Hamiltonian} Membership in \mathcal{NP} and VERTEX-COVER \leq_P HAMILTONIAN-CYCLE \Rightarrow HAMILTONIAN-CYCLE $\in \mathcal{NPC}$
 - Given (G = (V, E), k) construct G' = (V', E')
 - For each $(u, v) \in E$ we use the widget W_{uv} to the right.
 - A widget can only connect to the rest of the graph through [*u*, *v*, 1], [*u*, *v*, 6], [*v*, *u*, 1], and [*v*, *u*, 6]
 - Thus there are only three ways to traverse a widget as part of a Hamiltonian cycle
 - We also use the selector vertices s_1, s_2, \ldots, s_k
 - For each $u \in V$ and all the vertices $u^{(1)}, \ldots, u^{(du)}$ adjacent to u in G we add $([u, u^{(i)}, 6], [u, u^{(i+1)}, 1])$ to $G', 1 \le i \le du 1$
 - These form a "path of widgets" that include all the widgets for the edges incident on *u*
 - Useful to start such a part from a member of the vertex cover
 - We add the vertices $(s_j, [u, u^{(1)}, 1])$ and $(s_j, [u, u^{du}, 6])$ for all $u \in V$ and $1 \le j \le k$
 - These complete a cycle (combined with the path of widgets) but only for the members of the vertex cover



