# CS 467/567: Approximation algorithms and other ways to cope with NP-completeness 

Stefan D. Bruda

Winter 2023

## Toward "solving" NP-complete problems

- Some times we do not really need to solve the original problem
- A less general variant might do (and might be easy)
- Example: 2-SAT versus the full-blown SAT
- Example: most problems on graphs become easy when the graph is a tree


## Toward "solving" NP-complete problems

- Some times we do not really need to solve the original problem
- A less general variant might do (and might be easy)
- Example: 2-SAT versus the full-blown SAT
- Example: most problems on graphs become easy when the graph is a tree
- Some other times we can work with a less than perfect solution
- A "good enough" solution will do instead
- Pertinent to optimization problems
- $(1+\varepsilon)$-approximation algorithm $A$ :

$$
\frac{|o p t(x)-A(x)|}{\operatorname{opt}(x)} \leqslant \varepsilon
$$

- $\mathcal{N} \mathcal{P}$-complete problems can be
- Fully approximable: have $(1+\varepsilon)$-approximation algorithms for arbitrarily small $\varepsilon$
- Partly approximable: $(1+\varepsilon)$-approximation algorithms exist for some $\varepsilon$ but not all the way to 0
- Inapproximable: no $(1+\varepsilon)$-approximation algorithm exists (unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ )


## Toward "solving" NP-complete problems

- Some times we do not really need to solve the original problem
- A less general variant might do (and might be easy)
- Example: 2-SAT versus the full-blown SAT
- Example: most problems on graphs become easy when the graph is a tree
- Some other times we can work with a less than perfect solution
- A "good enough" solution will do instead
- Pertinent to optimization problems
- $(1+\varepsilon)$-approximation algorithm $A$ :

$$
\frac{\mid \text { opt }(x)-A(x) \mid}{\operatorname{opt}(x)} \leqslant \varepsilon
$$

- $\mathcal{N P}$-complete problems can be
- Fully approximable: have $(1+\varepsilon)$-approximation algorithms for arbitrarily small $\varepsilon$
- Partly approximable: $(1+\varepsilon)$-approximation algorithms exist for some $\varepsilon$ but not all the way to 0
- Inapproximable: no $(1+\varepsilon)$-approximation algorithm exists (unless $\mathcal{P}=\mathcal{N} \mathcal{P}$ )
- Some other times solving the original problem is a must
- Use algorithms with exponential running time in general but that often do much better


## APPROXIMATION SCHEMES

- An algorithm that for any input of size $n$ produces a solution $C$ instead of the optimal solution $C^{*}$ has an approximation ratio $\rho(n)$ if $\max \left\{\frac{|C|}{\left|C^{*}\right|}, \frac{\left|C^{*}\right|}{|C|}\right\} \leqslant \rho(n)$
- Such an algorithm is called a $\rho(n)$-approximation algorithm
- Approximation scheme: An algorithm that is a $(1+\varepsilon)$-approximation algorithm for any $\varepsilon>0$
- Polynomial-time approximation scheme: An approximation scheme whose running time is polynomial in the size of the input for any fixed $\varepsilon>0$
- Fully polynomial-time approximation scheme: An approximation scheme whose running time is polynomial in both the size of the input and $\varepsilon$


## VERTEX COVER

- Given a graph $G$ find the minimal vertex cover

Algorithm Approx-Vertex-Cover $(G=(V, E))$ :
(1) $C \leftarrow \varnothing, E^{\prime} \leftarrow E$
(2) while $E^{\prime} \neq \varnothing$ do
(0) pick some $(u, v) \in E^{\prime}$
(2) $C \leftarrow C \cup\{u, v\}$
( ( remove from $E^{\prime}$ every edge incident to either $u$ or $v$
(3) return $C$

## VERTEX COVER

- Given a graph $G$ find the minimal vertex cover

Algorithm Approx-Vertex-Cover $(G=(V, E))$ :
(0) $C \leftarrow \varnothing, E^{\prime} \leftarrow E$
(2) while $E^{\prime} \neq \varnothing$ do
(0) pick some $(u, v) \in E^{\prime}$
(2) $C \leftarrow C \cup\{u, v\}$
( ( remove from $E^{\prime}$ every edge incident to either $u$ or $v$
(3) return $C$

## Theorem

APPROX-VERTEX-COVER is a polynomial time 2-approximation algorithm

- Need to prove that the algorithm (a) runs in polynomial time, (b) return a vertex cover, and (c) the returned cover is not worse than twice the optimal one
- This algorithm is the best approximation algorithm known for the vertex cover problem
- There exist a relatively recent proof that no $(1+\varepsilon)$-approximation algorithm exists for this problem for any $\varepsilon<1 / 6$


## Traveling salesman with triangle inequality

- Given a complete graph $G=(V, E)$ and a cost function $c: E \rightarrow \mathbb{R}$, find a Hamiltonian cycle of minimum cost
- Simplifying assumption: cutting intermediate stops never increases the cost, or $\forall u, v, w \in V: c(u, w) \leqslant c(u, v)+c(v, w)$
Algorithm Approx-TSP $(G=(V, E), c)$ :
(1) Pick $r \in V$ (the "root" vertex)
(2) compute the minimum spanning tree T for $G$ from $r$
(3) return $H$, the list of vertices of $G$ ordered according to the preorder walk of $T$


## Theorem

APPROX-TSP is a polynomial time 2-approximation algorithm for TSP with triangle inequality

## Traveling salesman

## Theorem

If $\mathcal{P} \neq \mathcal{N P}$ then for any $\varepsilon>0$ there exists no polynomial-time $(1+\varepsilon)$-approximation algorithm for the traveling salesman problem

- Suppose that we have a $\rho=(1+\varepsilon)$-approximation algorithm $A$ for some $\varepsilon \in \mathbb{N}$; we then show how to use this algorithm to solve Hamiltonian-cycle
- Given $G=(V, E)$ let $G^{\prime}=\left(V, E^{\prime}\right)$ with $E^{\prime}=\{(u, v) \in V \times V: u \neq v\}$; let

$$
c(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ \rho|V|+1 & \text { otherwise }\end{cases}
$$

- If $G$ has a Hamiltonian cycle then $\left(G^{\prime}, c\right)$ contains a tour of cost $|V|$ and so $A$ will return a tour of cost $\rho|V|$ or less for $\left(G^{\prime}, c\right)$
- If $G$ does not have a Hamiltonian cycle then any tour in $\left(G^{\prime}, c\right)$ costs at least $\rho|V|$ and so $A$ will return a tour of cost larger than $\rho|V|$ for $\left(\boldsymbol{G}^{\prime}, \boldsymbol{c}\right)$
- A thus effectlvely solves HAmILTONIAN-CYCLE in polynomial time
- General technique for proving that certain problems do not approximate well!


## Sbset sum

- Given a set of integers $S=\left\{x_{i}, x_{2}, \ldots, x_{n}\right\}$ and an integer $t$, find a subset $S^{\prime} \subseteq S$ with $s=\sum_{x \in S^{\prime}} x$ such that (a) $s \leqslant t$ and (b) $s$ is maximized
- Exact algorithm (exponential running time): Iterate from 1 to $n$, performing the following for iteration $i$ (with $L_{0}=\langle \rangle$ ):
- Compute the list $L_{i}$ of the sums of all the subsets of $\left\{x_{1}, \ldots, x_{i}\right\}$ using $L_{i-1}$ :
(1) Add $x_{i}$ to all the elements of $L_{i-1}$ obtaining the list $L$
(3) Merge $L$ and $L_{i-1}$ thus obtaining $L_{i}$
- Delete from $L_{i}$ all the sums that are larger than $t$


## Sbset sum

- Given a set of integers $S=\left\{x_{i}, x_{2}, \ldots, x_{n}\right\}$ and an integer $t$, find a subset $S^{\prime} \subseteq S$ with $s=\sum_{x \in S^{\prime}} x$ such that (a) $s \leqslant t$ and (b) $s$ is maximized
- Exact algorithm (exponential running time): Iterate from 1 to $n$, performing the following for iteration $i$ (with $L_{0}=\langle \rangle$ ):
- Compute the list $L_{i}$ of the sums of all the subsets of $\left\{x_{1}, \ldots, x_{i}\right\}$ using $L_{i-1}$ :
(1) Add $x_{i}$ to all the elements of $L_{i-1}$ obtaining the list $L$
(3) Merge $L$ and $L_{i-1}$ thus obtaining $L_{i}$
- Delete from $L_{i}$ all the sums that are larger than $t$
- Approximation algorithm: as above, but trim the list $L_{i}$ in the (previously empty) Step 2
- If two values in $L_{i}$ are "close enough" to each other then only one is kept
- Given $0<\delta<1$ for each element $y$ removed from $L_{i}$ there exists an element $z$ still in $L_{i}$ such that $y /(1+\delta) \leqslant z \leqslant y$


## SUbSET SUM (CONT'D)

Algorithm Trim $(L, \delta)$ :
(1) let $m$ be the length of $L$
(2) $L^{\prime} \leftarrow\left\langle y_{1}\right\rangle$, last $\leftarrow y_{1}$
(3) for $i=1$ to $m$ do
if $y_{i}>$ last $\times(1+\delta)$ then (no need to test for $y_{i}<$ last since $L$ is sorted)
(0) append $y_{i}$ to the end of $L^{\prime}$
(2) last $\leftarrow y_{i}$
(9) return $L^{\prime}$

## Theorem

The algorithm just described with $\delta=\varepsilon / 2 n$ is a fully polynomial approximation scheme for the subset sum problem

## BACKTRACKING

Algorithm Backtracking( $S_{0}$ : problem)
(1) OPEN $\leftarrow\left\{S_{0}\right\}$
(2) while OPEN $\neq \varnothing$ do

- choose a sub-problem $S$ from Open and remove it from Open
(2) choose a way of splitting $S$ into sub-problems $S_{1}, S_{2}, \ldots, S_{n}$ [such that a solution for any $S_{i}$ is also a solution for $S$ ]
(0) foreach $S_{i} \in\left\{S_{1}, \ldots, S_{n}\right\}$ do
(1) if $\operatorname{TEst}\left(S_{i}\right)$ then return solution for $S_{i}$
(2) else add $S_{i}$ to OPEN
(3) return "no solution"
- Example of algorithm that has exponential running time in general but does much better in most instances
- Varied strategies of traversing sub-problems (each with advantages and disadvantages)
- How do we add the sub-problems $S_{1}, S_{2}, \ldots, S_{n}$ back to OPEN?


## BACKTRACKING

Algorithm Backtracking( $S_{0}$ : problem)
(1) OPEN $\leftarrow\left\{S_{0}\right\}$
(2) while OPEN $\neq \varnothing$ do

- choose a sub-problem $S$ from Open and remove it from Open
(2) choose a way of splitting $S$ into sub-problems $S_{1}, S_{2}, \ldots, S_{n}$ [such that a solution for any $S_{i}$ is also a solution for $S$ ]
(0) foreach $S_{i} \in\left\{S_{1}, \ldots, S_{n}\right\}$ do
(1) if $\operatorname{TEST}\left(S_{i}\right)$ then return solution for $S_{i}$
(2) else add $S_{i}$ to OPEN
(3) return "no solution"
- Example of algorithm that has exponential running time in general but does much better in most instances
- Varied strategies of traversing sub-problems (each with advantages and disadvantages)
- How do we add the sub-problems $S_{1}, S_{2}, \ldots, S_{n}$ back to OPEN?
- At the beginning $\rightarrow$ depth-first computation
- At the end $\rightarrow$ breath-first computatiopn


## Recursive Backtracking

- Basic backtracking has a straightforward recursive definition Algorithm Backtracking(S: problem)
(0) if $\operatorname{TEST}(S)$ then return solution for $S$
(2) else
(1) choose a way of aplitting $S$ into sub-problems $S_{1}, S_{2}, \ldots, S_{n}$
(2) combine $\operatorname{BACKTRACKING}\left(S_{1}\right), \ldots$, BACKTRACKING $\left(S_{n}\right)$ and return the result
- Depth-first computation (might not be able to find a solution), but
- Eliminates the need for storing Open (substantial savings)
- Issues specific to every particular problem:
- How to split into sub-problems
- How to test for elementary solutions


## BRANCH AND BOUND

- Backtracking is especially efficient for decision problems
- For more complex (namely, optimization) problems we can do even better:
Algorithm Branch-AND-Bound ( $S_{0}$ : problem)
(1) $A \leftarrow\left\{S_{0}\right\}$, bestsofar $=\infty$
(2) while $A$ is not empty do
(1) choose a sub-problem $S$ from $A$ and remove it from $A$
(2) choose a way of branching out $S$ into sub-problems $S_{1}, S_{2}, \ldots, S_{n}$
(3) foreach $S_{i} \in\left\{S_{1}, \ldots, S_{n}\right\}$ do
(1) if $S_{i}$ is a complete solution then update bestsofar
(2) else if LOWERBOUND $\left(S_{i}\right)<$ bestsofar then add $S_{i}$ to $A$
(3) return solution associated with bestsofar
- Same design issues, plus how to compute LowerBound
- Other methods include heuristics, local improvements
- Really the realm of artificial intelligence

