
CS 467/567: Approximation algorithms and other
ways to cope with NP-completeness

Stefan D. Bruda

Winter 2023

TOWARD “SOLVING” NP-COMPLETE PROBLEMS

Some times we do not really need to solve the original problem
A less general variant might do (and might be easy)
Example: 2-SAT versus the full-blown SAT
Example: most problems on graphs become easy when the graph is a tree

Some other times we can work with a less than perfect solution
A “good enough” solution will do instead
Pertinent to optimization problems
p1 ` εq-approximation algorithm A:

|optpxq ´ Apxq|

optpxq
ď ε

NP-complete problems can be
Fully approximable: have p1 ` εq-approximation algorithms for arbitrarily small ε
Partly approximable: p1 ` εq-approximation algorithms exist for some ε but not
all the way to 0
Inapproximable: no p1 ` εq-approximation algorithm exists (unless P “ NP)

Some other times solving the original problem is a must
Use algorithms with exponential running time in general but that often do
much better

CS CS 467/567 (S. D. Bruda) Winter 2023 1 / 10

TOWARD “SOLVING” NP-COMPLETE PROBLEMS

Some times we do not really need to solve the original problem
A less general variant might do (and might be easy)
Example: 2-SAT versus the full-blown SAT
Example: most problems on graphs become easy when the graph is a tree

Some other times we can work with a less than perfect solution
A “good enough” solution will do instead
Pertinent to optimization problems
p1 ` εq-approximation algorithm A:

|optpxq ´ Apxq|

optpxq
ď ε

NP-complete problems can be
Fully approximable: have p1 ` εq-approximation algorithms for arbitrarily small ε
Partly approximable: p1 ` εq-approximation algorithms exist for some ε but not
all the way to 0
Inapproximable: no p1 ` εq-approximation algorithm exists (unless P “ NP)

Some other times solving the original problem is a must
Use algorithms with exponential running time in general but that often do
much better

CS CS 467/567 (S. D. Bruda) Winter 2023 1 / 10

TOWARD “SOLVING” NP-COMPLETE PROBLEMS

Some times we do not really need to solve the original problem
A less general variant might do (and might be easy)
Example: 2-SAT versus the full-blown SAT
Example: most problems on graphs become easy when the graph is a tree

Some other times we can work with a less than perfect solution
A “good enough” solution will do instead
Pertinent to optimization problems
p1 ` εq-approximation algorithm A:

|optpxq ´ Apxq|

optpxq
ď ε

NP-complete problems can be
Fully approximable: have p1 ` εq-approximation algorithms for arbitrarily small ε
Partly approximable: p1 ` εq-approximation algorithms exist for some ε but not
all the way to 0
Inapproximable: no p1 ` εq-approximation algorithm exists (unless P “ NP)

Some other times solving the original problem is a must
Use algorithms with exponential running time in general but that often do
much better

CS CS 467/567 (S. D. Bruda) Winter 2023 1 / 10

APPROXIMATION SCHEMES

An algorithm that for any input of size n produces a solution C instead of
the optimal solution C˚ has an approximation ratio ρpnq if
max

{
|C|

|C˚|
, |C˚

|

|C|

}
ď ρpnq

Such an algorithm is called a ρpnq-approximation algorithm

Approximation scheme: An algorithm that is a p1 ` εq-approximation
algorithm for any ε ą 0

Polynomial-time approximation scheme: An approximation scheme whose
running time is polynomial in the size of the input for any fixed ε ą 0
Fully polynomial-time approximation scheme: An approximation scheme
whose running time is polynomial in both the size of the input and ε

CS CS 467/567 (S. D. Bruda) Winter 2023 2 / 10

VERTEX COVER

Given a graph G find the minimal vertex cover

Algorithm APPROX-VERTEX-COVER (G “ pV ,Eq):
1 C Ð H, E 1

Ð E
2 while E 1

‰ H do
1 pick some pu, vq P E 1

2 C Ð C Y {u, v}
3 remove from E 1 every edge incident to either u or v

3 return C

Theorem
APPROX-VERTEX-COVER is a polynomial time 2-approximation algorithm

Need to prove that the algorithm paq runs in polynomial time, pbq return a
vertex cover, and pcq the returned cover is not worse than twice the
optimal one
This algorithm is the best approximation algorithm known for the vertex
cover problem
There exist a relatively recent proof that no p1 ` εq-approximation
algorithm exists for this problem for any ε ă 1{6

CS CS 467/567 (S. D. Bruda) Winter 2023 3 / 10

VERTEX COVER

Given a graph G find the minimal vertex cover

Algorithm APPROX-VERTEX-COVER (G “ pV ,Eq):
1 C Ð H, E 1

Ð E
2 while E 1

‰ H do
1 pick some pu, vq P E 1

2 C Ð C Y {u, v}
3 remove from E 1 every edge incident to either u or v

3 return C

Theorem
APPROX-VERTEX-COVER is a polynomial time 2-approximation algorithm

Need to prove that the algorithm paq runs in polynomial time, pbq return a
vertex cover, and pcq the returned cover is not worse than twice the
optimal one
This algorithm is the best approximation algorithm known for the vertex
cover problem
There exist a relatively recent proof that no p1 ` εq-approximation
algorithm exists for this problem for any ε ă 1{6

CS CS 467/567 (S. D. Bruda) Winter 2023 3 / 10

TRAVELING SALESMAN WITH TRIANGLE INEQUALITY

Given a complete graph G “ pV ,Eq and a cost function c : E Ñ R, find a
Hamiltonian cycle of minimum cost
Simplifying assumption: cutting intermediate stops never increases the
cost, or @ u, v ,w P V : cpu,wq ď cpu, vq ` cpv ,wq

Algorithm APPROX-TSP (G “ pV ,Eq, c):
1 Pick r P V (the “root” vertex)
2 compute the minimum spanning tree T for G from r
3 return H, the list of vertices of G ordered according to the preorder walk of T

Theorem
APPROX-TSP is a polynomial time 2-approximation algorithm for TSP with
triangle inequality

CS CS 467/567 (S. D. Bruda) Winter 2023 4 / 10

TRAVELING SALESMAN

Theorem
If P ‰ NP then for any ε ą 0 there exists no polynomial-time
p1 ` εq-approximation algorithm for the traveling salesman problem

Suppose that we have a ρ “ p1 ` εq-approximation algorithm A for some
ε P N; we then show how to use this algorithm to solve
HAMILTONIAN-CYCLE

Given G “ pV ,Eq let G1 “ pV ,E 1q with E 1 “ {pu, vq P V ˆ V : u ‰ v}; let

cpu, vq “

{
1 if pu, vq P E
ρ|V | ` 1 otherwise

If G has a Hamiltonian cycle then pG1, cq contains a tour of cost |V | and
so A will return a tour of cost ρ|V | or less for pG1, cq

If G does not have a Hamiltonian cycle then any tour in pG1, cq costs at
least ρ|V | and so A will return a tour of cost larger than ρ|V | for pG1, cq

A thus effectlvely solves HAMILTONIAN-CYCLE in polynomial time
General technique for proving that certain problems do not approximate
well!

CS CS 467/567 (S. D. Bruda) Winter 2023 5 / 10

SBSET SUM

Given a set of integers S “ {xi , x2, . . . , xn} and an integer t , find a subset
S1 Ď S with s “

∑
xPS1 x such that paq s ď t and pbq s is maximized

Exact algorithm (exponential running time): Iterate from 1 to n,
performing the following for iteration i (with L0 “ ⟨⟩):

Compute the list Li of the sums of all the subsets of {x1, . . . , xi} using Li´1:
1 Add xi to all the elements of Li´1 obtaining the list L
2

3 Merge L and Li´1 thus obtaining Li

Delete from Li all the sums that are larger than t

Approximation algorithm: as above, but trim the list Li in the (previously
empty) Step 2

If two values in Li are “close enough” to each other then only one is kept
Given 0 ă δ ă 1 for each element y removed from Li there exists an element
z still in Li such that y{p1 ` δq ď z ď y

CS CS 467/567 (S. D. Bruda) Winter 2023 6 / 10

SBSET SUM

Given a set of integers S “ {xi , x2, . . . , xn} and an integer t , find a subset
S1 Ď S with s “

∑
xPS1 x such that paq s ď t and pbq s is maximized

Exact algorithm (exponential running time): Iterate from 1 to n,
performing the following for iteration i (with L0 “ ⟨⟩):

Compute the list Li of the sums of all the subsets of {x1, . . . , xi} using Li´1:
1 Add xi to all the elements of Li´1 obtaining the list L
2

3 Merge L and Li´1 thus obtaining Li

Delete from Li all the sums that are larger than t

Approximation algorithm: as above, but trim the list Li in the (previously
empty) Step 2

If two values in Li are “close enough” to each other then only one is kept
Given 0 ă δ ă 1 for each element y removed from Li there exists an element
z still in Li such that y{p1 ` δq ď z ď y

CS CS 467/567 (S. D. Bruda) Winter 2023 6 / 10

SUBSET SUM (CONT’D)

Algorithm TRIM (L, δ):
1 let m be the length of L
2 L1 Ð ⟨y1⟩, last Ð y1

3 for i “ 1 to m do
if yi ą last ˆ p1 ` δq then (no need to test for yi ă last since L is sorted)

1 append yi to the end of L1

2 last Ð yi

4 return L1

Theorem
The algorithm just described with δ “ ε{2n is a fully polynomial approximation
scheme for the subset sum problem

CS CS 467/567 (S. D. Bruda) Winter 2023 7 / 10

BACKTRACKING

Algorithm BACKTRACKING(S0: problem)
1 OPEN Ð {S0}
2 while OPEN ‰ H do

1 choose a sub-problem S from OPEN and remove it from OPEN
2 choose a way of splitting S into sub-problems S1, S2, . . . , Sn

[such that a solution for any Si is also a solution for S]
3 foreach Si P {S1, . . . ,Sn} do

1 if TESTpSi q then return solution for Si
2 else add Si to OPEN

3 return “no solution”

Example of algorithm that has exponential running time in general but
does much better in most instances
Varied strategies of traversing sub-problems (each with advantages and
disadvantages)
How do we add the sub-problems S1, S2, . . . , Sn back to OPEN?

At the beginning Ñ depth-first computation
At the end Ñ breath-first computatiopn

CS CS 467/567 (S. D. Bruda) Winter 2023 8 / 10

BACKTRACKING

Algorithm BACKTRACKING(S0: problem)
1 OPEN Ð {S0}
2 while OPEN ‰ H do

1 choose a sub-problem S from OPEN and remove it from OPEN
2 choose a way of splitting S into sub-problems S1, S2, . . . , Sn

[such that a solution for any Si is also a solution for S]
3 foreach Si P {S1, . . . ,Sn} do

1 if TESTpSi q then return solution for Si
2 else add Si to OPEN

3 return “no solution”

Example of algorithm that has exponential running time in general but
does much better in most instances
Varied strategies of traversing sub-problems (each with advantages and
disadvantages)
How do we add the sub-problems S1, S2, . . . , Sn back to OPEN?

At the beginning Ñ depth-first computation
At the end Ñ breath-first computatiopn

CS CS 467/567 (S. D. Bruda) Winter 2023 8 / 10

RECURSIVE BACKTRACKING

Basic backtracking has a straightforward recursive definition

Algorithm BACKTRACKING(S: problem)
1 if TEST(S) then return solution for S
2 else

1 choose a way of aplitting S into sub-problems S1, S2, . . . , Sn
2 combine BACKTRACKINGpS1q, . . . , BACKTRACKINGpSnq and return the result

Depth-first computation (might not be able to find a solution), but
Eliminates the need for storing OPEN (substantial savings)
Issues specific to every particular problem:

How to split into sub-problems
How to test for elementary solutions

CS CS 467/567 (S. D. Bruda) Winter 2023 9 / 10

BRANCH AND BOUND

Backtracking is especially efficient for decision problems
For more complex (namely, optimization) problems we can do even
better:
Algorithm BRANCH-AND-BOUND(S0: problem)

1 A Ð {S0}, bestsofar “ 8
2 while A is not empty do

1 choose a sub-problem S from A and remove it from A
2 choose a way of branching out S into sub-problems S1, S2, . . . , Sn
3 foreach Si P {S1, . . . ,Sn} do

1 if Si is a complete solution then update bestsofar
2 else if LOWERBOUNDpSi q ă bestsofar then add Si to A

3 return solution associated with bestsofar

Same design issues, plus how to compute LOWERBOUND

Other methods include heuristics, local improvements
Really the realm of artificial intelligence

CS CS 467/567 (S. D. Bruda) Winter 2023 10 / 10

