CS 467/567: Approximation algorithms and other ways to cope with NP-completeness

Stefan D. Bruda

Winter 2023

- Some times we do not really need to solve the original problem
 - A less general variant might do (and might be easy)
 - Example: 2-SAT versus the full-blown SAT
 - Example: most problems on graphs become easy when the graph is a tree

- Some times we do not really need to solve the original problem
 - A less general variant might do (and might be easy)
 - Example: 2-SAT versus the full-blown SAT
 - Example: most problems on graphs become easy when the graph is a tree
- Some other times we can work with a less than perfect solution
 - A "good enough" solution will do instead
 - Pertinent to optimization problems
 - $(1 + \varepsilon)$ -approximation algorithm *A*:

$$\frac{|opt(x) - A(x)|}{opt(x)} \leqslant \varepsilon$$

- $\mathcal{NP}\text{-}\text{complete problems can be}$
 - Fully approximable: have $(1 + \varepsilon)$ -approximation algorithms for arbitrarily small ε
 - Partly approximable: $(1 + \varepsilon)$ -approximation algorithms exist for some ε but not all the way to 0
 - Inapproximable: no $(1 + \varepsilon)$ -approximation algorithm exists (unless $\mathcal{P} = \mathcal{NP}$)

- Some times we do not really need to solve the original problem
 - A less general variant might do (and might be easy)
 - Example: 2-SAT versus the full-blown SAT
 - Example: most problems on graphs become easy when the graph is a tree
- Some other times we can work with a less than perfect solution
 - A "good enough" solution will do instead
 - Pertinent to optimization problems
 - $(1 + \varepsilon)$ -approximation algorithm *A*:

$$\frac{|opt(x) - \textit{A}(x)|}{opt(x)} \leqslant \varepsilon$$

- $\mathcal{NP}\text{-}\text{complete problems can be}$
 - Fully approximable: have $(1 + \varepsilon)$ -approximation algorithms for arbitrarily small ε
 - Partly approximable: $(1 + \varepsilon)$ -approximation algorithms exist for some ε but not all the way to 0
 - Inapproximable: no $(1 + \varepsilon)$ -approximation algorithm exists (unless $\mathcal{P} = \mathcal{NP}$)
- Some other times solving the original problem is a must
 - Use algorithms with exponential running time in general but that often do much better

- An algorithm that for any input of size *n* produces a solution *C* instead of the optimal solution *C*^{*} has an approximation ratio $\rho(n)$ if $max \left\{ \frac{|C|}{|C^*|}, \frac{|C^*|}{|C|} \right\} \leq \rho(n)$
 - Such an algorithm is called a $\rho(n)$ -approximation algorithm
- Approximation scheme: An algorithm that is a (1 + ε)-approximation algorithm for any ε > 0
 - Polynomial-time approximation scheme: An approximation scheme whose running time is polynomial in the size of the input for any fixed $\varepsilon > 0$
 - Fully polynomial-time approximation scheme: An approximation scheme whose running time is polynomial in both the size of the input and ε

VERTEX COVER

• Given a graph G find the minimal vertex cover

Algorithm APPROX-VERTEX-COVER (G = (V, E)):

- $\textcircled{0} \quad C \leftarrow \varnothing, \, E' \leftarrow E$
- **2** while $E' \neq \emptyset$ do
 - pick some $(u, v) \in E'$
 - $\bigcirc C \leftarrow C \cup \{u, v\}$

(3) remove from E' every edge incident to either u or v

return C

VERTEX COVER

• Given a graph G find the minimal vertex cover

Algorithm APPROX-VERTEX-COVER (G = (V, E)):

- $\bigcirc C \leftarrow \emptyset, E' \leftarrow E$
- (2) while $E' \neq \emptyset$ do
 - pick some $(u, v) \in E'$
 - $\bigcirc C \leftarrow C \cup \{u, v\}$
 - semove from E' every edge incident to either u or v

Interpretation C

Theorem

APPROX-VERTEX-COVER is a polynomial time 2-approximation algorithm

- Need to prove that the algorithm (*a*) runs in polynomial time, (*b*) return a vertex cover, and (*c*) the returned cover is not worse than twice the optimal one
- This algorithm is the best approximation algorithm known for the vertex cover problem
- There exist a relatively recent proof that no $(1 + \varepsilon)$ -approximation algorithm exists for this problem for any $\varepsilon < 1/6$

- Given a complete graph G = (V, E) and a cost function $c : E \to \mathbb{R}$, find a Hamiltonian cycle of minimum cost
- Simplifying assumption: cutting intermediate stops never increases the cost, or ∀ u, v, w ∈ V : c(u, w) ≤ c(u, v) + c(v, w)

Algorithm APPROX-TSP (G = (V, E), c):

- **1** Pick $r \in V$ (the "root" vertex)
- 2 compute the minimum spanning tree T for G from r
- return H, the list of vertices of G ordered according to the preorder walk of T

Theorem

APPROX-TSP is a polynomial time 2-approximation algorithm for TSP with triangle inequality

Theorem

If $\mathcal{P} \neq \mathcal{NP}$ then for any $\varepsilon > 0$ there exists no polynomial-time $(1 + \varepsilon)$ -approximation algorithm for the traveling salesman problem

- Suppose that we have a $\rho = (1 + \varepsilon)$ -approximation algorithm A for some $\varepsilon \in \mathbb{N}$; we then show how to use this algorithm to solve HAMILTONIAN-CYCLE
- Given G = (V, E) let G' = (V, E') with $E' = \{(u, v) \in V \times V : u \neq v\}$; let

$$m{c}(m{u},m{v}) = \left\{egin{array}{c} 1 & ext{if } (m{u},m{v}) \in m{E} \
ho |m{V}| + 1 & ext{otherwise} \end{array}
ight.$$

- If G has a Hamiltonian cycle then (G', c) contains a tour of cost |V| and so A will return a tour of cost ρ|V| or less for (G', c)
- If G does not have a Hamiltonian cycle then any tour in (G', c) costs at least ρ|V| and so A will return a tour of cost larger than ρ|V| for (G', c)
- A thus effectively solves HAMILTONIAN-CYCLE in polynomial time
- General technique for proving that certain problems do not approximate well!

- Given a set of integers $S = \{x_i, x_2, ..., x_n\}$ and an integer *t*, find a subset $S' \subseteq S$ with $s = \sum_{x \in S'} x$ such that (*a*) $s \leq t$ and (*b*) *s* is maximized
- Exact algorithm (exponential running time): Iterate from 1 to *n*, performing the following for iteration *i* (with $L_0 = \langle \rangle$):
 - Compute the list L_i of the sums of all the subsets of $\{x_1, \ldots, x_i\}$ using L_{i-1} :

Add x_i to all the elements of L_{i-1} obtaining the list L

- Merge L and L_{i-1} thus obtaining L_i
- Delete from L_i all the sums that are larger than t

- Given a set of integers $S = \{x_i, x_2, ..., x_n\}$ and an integer *t*, find a subset $S' \subseteq S$ with $s = \sum_{x \in S'} x$ such that (*a*) $s \leq t$ and (*b*) *s* is maximized
- Exact algorithm (exponential running time): Iterate from 1 to *n*, performing the following for iteration *i* (with $L_0 = \langle \rangle$):
 - Compute the list L_i of the sums of all the subsets of $\{x_1, \ldots, x_i\}$ using L_{i-1} :

Add x_i to all the elements of L_{i-1} obtaining the list L

 $\overline{\mathbf{0}}$ Merge *L* and L_{i-1} thus obtaining L_i

- Delete from L_i all the sums that are larger than t
- Approximation algorithm: as above, but trim the list *L_i* in the (previously empty) Step 2
 - If two values in L_i are "close enough" to each other then only one is kept
 - Given $0 < \delta < 1$ for each element *y* removed from L_i there exists an element *z* still in L_i such that $y/(1 + \delta) \le z \le y$

Algorithm TRIM (L, δ):

- Iet m be the length of L
- $2 L' \leftarrow \langle y_1 \rangle, \, last \leftarrow y_1$
- for i = 1 to m do if y_i > last × (1 + δ) then (no need to test for y_i < last since L is sorted)</p>
 - append y_i to the end of L'
 - **2** *last* \leftarrow y_i
- return L'

Theorem

The algorithm just described with $\delta = \varepsilon/2n$ is a fully polynomial approximation scheme for the subset sum problem

Algorithm BACKTRACKING(S_0 : problem)

- Open $\leftarrow \{S_0\}$
- **3** while Open $\neq \emptyset$ do
 - Choose a sub-problem S from OPEN and remove it from OPEN
 - **2** choose a way of splitting *S* into sub-problems S_1, S_2, \ldots, S_n [such that a solution for any S_i is also a solution for *S*]
 - **o** foreach $S_i \in \{S_1, \ldots, S_n\}$ do
 - **if** $TEST(S_i)$ **then return** solution for S_i
 - else add S_i to OPEN
- return "no solution"
 - Example of algorithm that has exponential running time in general but does much better in most instances
 - Varied strategies of traversing sub-problems (each with advantages and disadvantages)
- How do we add the sub-problems S_1, S_2, \ldots, S_n back to OPEN?

Algorithm BACKTRACKING(S_0 : problem)

- Open $\leftarrow \{S_0\}$
- **3** while Open $\neq \emptyset$ do
 - Choose a sub-problem S from OPEN and remove it from OPEN
 - **2** choose a way of splitting *S* into sub-problems S_1, S_2, \ldots, S_n [such that a solution for any S_i is also a solution for *S*]
 - **o** foreach $S_i \in \{S_1, \ldots, S_n\}$ do
 - **if** $TEST(S_i)$ **then return** solution for S_i
 - else add S_i to OPEN
- return "no solution"
- Example of algorithm that has exponential running time in general but does much better in most instances
- Varied strategies of traversing sub-problems (each with advantages and disadvantages)
- How do we add the sub-problems S₁, S₂, ..., S_n back to OPEN?
 - At the beginning \rightarrow depth-first computation
 - At the end \rightarrow breath-first computatiopn

Basic backtracking has a straightforward recursive definition

Algorithm BACKTRACKING(*S*: problem)

- if TEST(S) then return solution for S
- else
 - choose a way of aplitting S into sub-problems S_1, S_2, \ldots, S_n
 - **2** combine $BACKTRACKING(S_1), \ldots, BACKTRACKING(S_n)$ and return the result
- Depth-first computation (might not be able to find a solution), but
- Eliminates the need for storing OPEN (substantial savings)
- Issues specific to every particular problem:
 - How to split into sub-problems
 - How to test for elementary solutions

- Backtracking is especially efficient for decision problems
- For more complex (namely, optimization) problems we can do even better:
 - **Algorithm** BRANCH-AND-BOUND(S₀: problem)
 - $A \leftarrow \{S_0\}, bestsofar = \infty$
 - While A is not empty do
 - choose a sub-problem S from A and remove it from A
 - 2 choose a way of branching out S into sub-problems S_1, S_2, \ldots, S_n
 - **(a)** foreach $S_i \in \{S_1, \ldots, S_n\}$ do
 - **if** S_i is a complete solution **then** update bestsofar
 - **2** else if $LOWERBOUND(S_i) < bestsofar$ then add S_i to A
 - return solution associated with bestsofar
- Same design issues, plus how to compute LOWERBOUND
- Other methods include heuristics, local improvements
 - Really the realm of artificial intelligence

