CS 467/567: Linear Programming

Stefan D. Bruda

Winter 2023

LINEAR PROGRAMMING

@ Linear function: f(x1, X2, ... Xn) = Z/’.’_1 ajx;

@ Linear constraint: g(xi, ..., X,) » b for some linear function g and either
e == (linear equality) or e € {<, >} (linear inequalities)

@ A linear programming problem is the problem of optimizing (minimizing or
maximizing) a linear function subject to a finite set of linear constraints;
an instance of this problem is a linear program

CS CS 467/567 (S. D. Bruda) Winter 2023 1/12

LINEAR PROGRAMMING

@ Linear function: f(x1, X2, ... Xn) = 27_1 ajx;

@ Linear constraint: g(xi, ..., X,) » b for some linear function g and either
e == (linear equality) or e € {<, >} (linear inequalities)

@ A linear programming problem is the problem of optimizing (minimizing or
maximizing) a linear function subject to a finite set of linear constraints;
an instance of this problem is a linear program

@ Solving 2-variable optimization problems:

@ The linear constraints form a convex region in the (x1, x2)-Cartesian
coordinate system (the simplex)

@ The set of points f(x1, X2) = z form a line whose slope is independent of z

e The goal becomes finding the optimal (maximal/minimal) z with a non-empty
intersection between the simplex and the line, which always corresponds to
a vertex of the simplex if the simplex is bounded

e The simplex algorithm starts form an arbitrary vertex of the simplex, keeps
moving to a neighbor whose value is no smaller/larger than that of the
current vertex

@ The algorithm terminates when it reaches a local maximum/minimum (a
vertex with all the neighbors having a smaller/larger objective value)

o This is also the global maximum/minimum

CS CS 467/567 (S. D. Bruda) Winter 2023 1/12

LINEAR PROGRAMMING

@ Linear function: f(x1, X2, ... Xn) = 27_1 ajx;

@ Linear constraint: g(xi, ..., X,) » b for some linear function g and either
e == (linear equality) or e € {<, >} (linear inequalities)

@ A linear programming problem is the problem of optimizing (minimizing or
maximizing) a linear function subject to a finite set of linear constraints;
an instance of this problem is a linear program

@ Solving 2-variable optimization problems:

The linear constraints form a convex region in the (x1, x2)-Cartesian
coordinate system (the simplex)

The set of points f(x1, x2) = z form a line whose slope is independent of z
The goal becomes finding the optimal (maximal/minimal) z with a non-empty
intersection between the simplex and the line, which always corresponds to
a vertex of the simplex if the simplex is bounded

The simplex algorithm starts form an arbitrary vertex of the simplex, keeps
moving to a neighbor whose value is no smaller/larger than that of the
current vertex

The algorithm terminates when it reaches a local maximum/minimum (a
vertex with all the neighbors having a smaller/larger objective value)

This is also the global maximum/minimum because the simplex is convex

@ |dea can be trivially generalized to an n-dimensional spaces

CS CS 467/567 (S. D. Bruda) Winter 2023 1/12

THE STANDARD FORMS OF LINEAR PROGRAMS

@ Standard form: Given n real numbers ¢;, 1 < i < nand mn real numbers
aj, 1 <i<m,1<j<n,find nreal numbers x;, 1 </ < nthat:

maximize the objective function -7, ¢;x;
subject to the constraints 27:1 ajx; <b,1<i<mandx;>0,1<i<n

@ Slack form: all constraints are either equality constraints or x; > 0
@ Terminology for linear programs:

An assignment X of the variables x;, 1 < i < ncan be a feasible solution
(satisfies all constraints) or an infeasible solution (violates at least one
constraint)

A solution X has the objective value c’x

A solution X whose ¢”X is the maximum of all the feasible solutions is an
optimal solution and its ¢"X is the optimal objective value

If a linear program does not have any feasible solutions then it is infeasible,
otherwise it is feasible

If a linear program does not have a finite optimal objective value then it is
unbounded

CS CS 467/567 (S. D. Bruda) Winter 2023 2/12

CONVERSION TO STANDARD AND SLACK FORMS

@ Conversion to standard form:

e To convert a minimization instance into a maximization instance: negate all
the coefficients in the objective function
o If some variable x; does not have the constraint x; > 0:

@ Replace every occurrence of x; with x/’ — xj”
@ Add the constraints x].’ > 0and xj” =0

o If we have an equality constraint g(xi, ..., x») = b: replace it with two
constraints g(x1,...,%s) = band g(x1,...,xn) < b
o If we have a constraint g(xi1, ..., xa) = b: we multiply both sides with (-1)

(and we flip the comparison, and we distribute the (-1) into the sum)

CS CS 467/567 (S. D. Bruda) Winter 2023 3/12

CONVERSION TO STANDARD AND SLACK FORMS

@ Conversion to standard form:

e To convert a minimization instance into a maximization instance: negate all
the coefficients in the objective function
o If some variable x; does not have the constraint x; > 0:

@ Replace every occurrence of x; with x/’ — xj”
@ Add the constraints x].’ > 0and xj” =0

o If we have an equality constraint g(xi, ..., x») = b: replace it with two
constraints g(x1,...,%s) = band g(x1,...,xn) < b
o If we have a constraint g(xi1, ..., xa) = b: we multiply both sides with (-1)

(and we flip the comparison, and we distribute the (-1) into the sum)
@ Conversion of standard form into slack form:
o Each constraint 2721 ajx; < by is rewritten as the two constraints

n
S=bi—E ajX; s=0
j=1

@ sis anew variable (slack or basic variable as opposed to a nonbasic
variable). .. that just does not happen to appear in the objective function

CS CS 467/567 (S. D. Bruda) Winter 2023 3/12

SHORTEST PATH AS LINEAR PROGRAM

@ Problem: Given a graph G = (V, E) with a weight function w : E - R, a
source vertex s € V and a target vertex t € V, find d;, the weight of the

shortest path from sto t
@ Linear program: maximize d; subject to the following constraints:

ds =0 d, < dy + w(u,v) foreach (u,v) e E

@ d, is the weight of the path from sto u

CS CS 467/567 (S. D. Bruda) Winter 2023 4/12

SHORTEST PATH AS LINEAR PROGRAM

@ Problem: Given a graph G = (V, E) with a weight function w : E - R, a
source vertex s € V and a target vertex t € V, find d;, the weight of the
shortest path from sto t

@ Linear program: maximize d; subject to the following constraints:

ds =0 d, < dy + w(u,v) foreach (u,v) e E

@ d, is the weight of the path from sto u

o Note: dy = miny st (uvyee{du + W(u, v)} so d, is the maximal value smaller
than all the values in {d, + w(u, v)} so we need to maximize d, (the
minimization nature of the problem is given by the constraints)

CS CS 467/567 (S. D. Bruda) Winter 2023 4/12

MAXIMUM FLOW AS LINEAR PROGRAM

@ Flow network: graph G = (V, E) with a capacity function ¢ : E — R™* and
two designated vertices s,t € V such that (u,v) e E = (v,u) ¢ E

o Convenient abuse of notation: c(u, v) = 0 whenever (u,v) ¢ E

@ Flow in G: function f : V x V — IR satisfying the following constraints
o Capacity constraint: 0 < f(u,v) < c(u,v) forall u,ve V
e Flow conservation: >, f(v,u) =3 ., f(u,v) forall ue V\{s, t}

@ Problem: Given a flow network, find a flow that maximizes f(s, f)
@ Linear program: maximize) ., fsv — >,y fvs Subject to the following

constraints:

fow < c(u,v) foreach u,veV

> fu=> fu foreach wue V\{st}

veV veV
fo, >0 foreach u,veV

CS CS 467/567 (S. D. Bruda) Winter 2023 5/12

MULTICOMMODITY FLOW

@ Input: a flow network G = (V, E) with capacity function ¢
@ Additional input: Commaodities Ki, Ko, ..., Kk
e K = (si, 1, d;) where s;/t; are the source/target vertices for K;, and d; is the
demand (desired flow value) for K;
o Aggregate flow: f,, = Zﬁ; fuv, Where fy, is the flow for K; from uto v
@ Problem: Given a flow network and kK commodities, determine whether
there exists an aggregate flow f such that f,, < c(u, v) for all (u,v) e E

CS CS 467/567 (S. D. Bruda) Winter 2023 6/12

MULTICOMMODITY FLOW

@ Input: a flow network G = (V, E) with capacity function ¢
@ Additional input: Commaodities Ki, Ko, ..., Kk
e K = (si, 1, d;) where s;/t; are the source/target vertices for K;, and d; is the
demand (desired flow value) for K;
o Aggregate flow: f,, = Zﬁ; fuv, Where fy, is the flow for K; from uto v
@ Problem: Given a flow network and kK commodities, determine whether
there exists an aggregate flow f such that f,, < c(u, v) for all (u,v) € E
@ Linear program: maximize 0 subject to the following constraints:

k
Z fuy <c(u,v) foreach u,veV

Z fuv — Z fiu =0 foreach wue V\{s,t}

veV eV
> fisv =Y fus, =0 foreach 1<i<k
veV veV

fiy =0 foreach u,veVand1<i<k

@ Solving multicommodity flow as a linear programming problem is the only
known efficient algorithm for this problem

CS CS 467/567 (S. D. Bruda) Winter 2023 6/12

SLACK FORM AS INPUT

@ Aslack formis a tuple (N, B, A, b, ¢, v) which denotes the following linear
program

zZ = V+ ZC/'XJ'
jeN

bi—> ajx forieB
jeN

Xi

with the implicit understanding that x; > Oforallie Nu B

e N contains the indices of all nonbasic variables, |N| = n
e B contains the indices of all basic variable, |B| = m
e NuB={1,2,...,n+ m}

CS CS 467/567 (S. D. Bruda) Winter 2023 7/12

THE SIMPLEX ALGORITHM: ALGEBRAIC IDEA

One iteration = pivot operation

@ Set all the nonbasic variables to 0, solve for the basic variables = basic
solution

@ Select a nonbasic variable x, with positive coefficient (entering variable)

in the objective function and increase its value as much as possible
without constraint violation

@ The above increase makes one basic variable x; zero (the leaving
variable)

@ Reformulate the constraints such that x, becomes basic and x; nonbasic

@ If all the coefficients ¢; are negative then the current basic solution is the
optimal solution, otherwise repeat from Step 1

CS CS 467/567 (S. D. Bruda) Winter 2023 8/12

THE PIVOT ALGORITHM

Algorithm PIvoT((N,B,A,b,c,v), I, e) returns (N, B’ A, b',c’,v/")
@ Compute the coefficients of the equation for new basic variable xe:
0 b:-} <~ b//ale
© foreach je N\{e} do a; — aj/ae
Q &, —1/ae
@ Compute the coefficients of the remaining constraints:
@ foreachic B\{/} do
Q b: — b — a,-eb’e
@ for each j e N\{e} do aj.j — aj— a,-ea;j
O & — —aea,
@ Compute the objective function:
Q v —v+cebl,
Q foreach je N\{e} do ¢/ — ¢ — ceay
Q ¢ «— —ceay
@ Compute the new basic and nonbasic variables:
Q N — N\{e}u{l}
Q B —B\{}u{e}

CS CS 467/567 (S. D. Bruda) Winter 2023 9/12

THE SIMPLEX ALGORITHM

Algorithm SIMPLEX(A, b, ¢) returns (X1,X2,...,Xp)
@ (N,B,A b,c,v) < INITIALIZE-SIMPLEX(A, b, C)
@ let A be a vector of size n

© while some index j € N has ¢; > 0

@ choose an index e € N such that c. > 0

@ foreachic Bdo

if ai, > 0 then A; — b;/aj else A; — ©

@ choose / € B such that A, is minimum over A;

Q if A; = oo then return “unbounded”

@ else (N,B,A b,c,v) — PIVOT((N, B, A, b,c,v), 1, e)
Q fori—1tondo

Q@ ifieBthenXx; — bjelse x; — 0

@ Input is a linear program in standard form

@ INITIALIZE-SIMPLEX returns a slack form for which the initial basic
solution is feasible (or a suitable message if the linear program is
infeasible)

CS CS 467/567 (S. D. Bruda) Winter 2023 10/12

THE INITIALIZE-SIMPLEX ALGORITHM

Let L be a program in standard form and xo a new variable. Let L,y be:
Maximize —xg
subjectto Y] | ajx;— xo < bifor1 <i<mandx >0for0<j<n

Then L is feasible iff the optimal objective value for L,y is O.

INITIALIZE-SIMPLEX then works as follows:

@ Let by be the minimum b;

@ If by = 0 then the initial solution is feasible so convert to slack and return
@ Form L, as in the lemma, convert it to the slack form (N, B, A, b, c,v)
°

Let / = n+ k and perform PIvOT((N, B, A, b, ¢, v), I, 0); the basic solution
is now feasible for L,

@ Use the while loop of SIMPLEX to find an optimal solution for L,,; return
“infeasible” if xq # 0

@ Remove xp from the constraints, restore the original objective function for
L, but replace basic variables with the right hand side of its constraint

@ Return this final slack form

CS CS 467/567 (S. D. Bruda) Winter 2023 11/12

PROPERTIES OF THE SIMPLEX ALGORITHM

If SIMPLEX fails to terminate in at most(nfnm) iterations then it cycles.

So SIMPLEX either reports that the linear program is unbounded or terminates
n+m

with a feasible solution in at most <) iterations

A\

Theorem (Fundamental theorem of linear programming)
Any linear program L given in standard form either:

@ has an optimal solution with a finite objective value,

@ is infeasible, or

© s unbounded.

If L is infeasible or unbounded, then SIMPLEX returns “infeasible” or
“unbounded”, respectively. Otherwise SIMPLEX returns an optimal solution
with a finite value.)

CS CS 467/567 (S. D. Bruda) Winter 2023 12/12

