CS 467/567: Linear Programming

Stefan D. Bruda

Winter 2023

LINEAR PROGRAMMING

- Linear function: $f(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_j x_j$
- Linear constraint: $g(x_1, ..., x_n) \bullet b$ for some linear function g and either
 - == (linear equality) or $\in \{\leq, \geq\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program

LINEAR PROGRAMMING

- Linear function: $f(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_j x_j$
- Linear constraint: $g(x_1, ..., x_n) \bullet b$ for some linear function g and either
 - == (linear equality) or $\in \{\leq, \geq\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program
- Solving 2-variable optimization problems:
 - The linear constraints form a convex region in the (*x*₁, *x*₂)-Cartesian coordinate system (the simplex)
 - The set of points $f(x_1, x_2) = z$ form a line whose slope is independent of z
 - The goal becomes finding the optimal (maximal/minimal) *z* with a non-empty intersection between the simplex and the line, which always corresponds to a vertex of the simplex if the simplex is bounded
 - The simplex algorithm starts form an arbitrary vertex of the simplex, keeps moving to a neighbor whose value is no smaller/larger than that of the current vertex
 - The algorithm terminates when it reaches a local maximum/minimum (a vertex with all the neighbors having a smaller/larger objective value)
 - This is also the global maximum/minimum

LINEAR PROGRAMMING

- Linear function: $f(x_1, x_2, \dots, x_n) = \sum_{j=1}^n a_j x_j$
- Linear constraint: $g(x_1, ..., x_n) \bullet b$ for some linear function g and either
 - == (linear equality) or $\in \{\leq, \geq\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program
- Solving 2-variable optimization problems:
 - The linear constraints form a convex region in the (*x*₁, *x*₂)-Cartesian coordinate system (the simplex)
 - The set of points $f(x_1, x_2) = z$ form a line whose slope is independent of z
 - The goal becomes finding the optimal (maximal/minimal) *z* with a non-empty intersection between the simplex and the line, which always corresponds to a vertex of the simplex if the simplex is bounded
 - The simplex algorithm starts form an arbitrary vertex of the simplex, keeps moving to a neighbor whose value is no smaller/larger than that of the current vertex
 - The algorithm terminates when it reaches a local maximum/minimum (a vertex with all the neighbors having a smaller/larger objective value)
 - This is also the global maximum/minimum because the simplex is convex
- Idea can be trivially generalized to an *n*-dimensional spaces

- Standard form: Given *n* real numbers c_i , $1 \le i \le n$ and *mn* real numbers a_{ij} , $1 \le i \le m$, $1 \le j \le n$, find *n* real numbers x_i , $1 \le i \le n$ that:
 - maximize the objective function $\sum_{j=1}^{n} c_j x_j$
 - subject to the constraints $\sum_{i=1}^{n} a_{ii} x_i \leq b_i$, $1 \leq i \leq m$ and $x_i \geq 0$, $1 \leq i \leq n$
- Slack form: all constraints are either equality constraints or $x_j \ge 0$
- Terminology for linear programs:
 - An assignment x̄ of the variables x_i, 1 ≤ i ≤ n can be a feasible solution (satisfies all constraints) or an infeasible solution (violates at least one constraint)
 - A solution \overline{x} has the objective value $c^T \overline{x}$
 - A solution x
 whose c^Tx
 is the maximum of all the feasible solutions is an
 optimal solution and its c^Tx
 is the optimal objective value
 - If a linear program does not have any feasible solutions then it is infeasible, otherwise it is feasible
 - If a linear program does not have a finite optimal objective value then it is unbounded

- Conversion to standard form:
 - To convert a minimization instance into a maximization instance: negate all the coefficients in the objective function
 - If some variable x_j does not have the constraint $x_j \ge 0$:
 - Replace every occurrence of x_j with $x'_j x''_j$
 - Add the constraints $x'_i \ge 0$ and $x''_i \ge 0$
 - If we have an equality constraint $g(x_1, ..., x_n) = b$: replace it with two constraints $g(x_1, ..., x_n) \ge b$ and $g(x_1, ..., x_n) \le b$
 - If we have a constraint $g(x_1, ..., x_n) \ge b$: we multiply both sides with (-1) (and we flip the comparison, and we distribute the (-1) into the sum)

- Conversion to standard form:
 - To convert a minimization instance into a maximization instance: negate all the coefficients in the objective function
 - If some variable x_j does not have the constraint $x_j \ge 0$:
 - Replace every occurrence of x_i with $x'_i x''_i$
 - Add the constraints $x'_i \ge 0$ and $x''_i \ge 0$
 - If we have an equality constraint $g(x_1, ..., x_n) = b$: replace it with two constraints $g(x_1, ..., x_n) \ge b$ and $g(x_1, ..., x_n) \le b$
 - If we have a constraint $g(x_1, ..., x_n) \ge b$: we multiply both sides with (-1) (and we flip the comparison, and we distribute the (-1) into the sum)
- Conversion of standard form into slack form:
 - Each constraint $\sum_{i=1}^{n} a_{ij} x_i \leq b_i$ is rewritten as the two constraints

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
 $s \ge 0$

• *s* is a new variable (slack or basic variable as opposed to a nonbasic variable)... that just does not happen to appear in the objective function

- Problem: Given a graph G = (V, E) with a weight function w : E → ℝ, a source vertex s ∈ V and a target vertex t ∈ V, find d_t, the weight of the shortest path from s to t
- Linear program: maximize *d*_t subject to the following constraints:

$$d_s = 0$$
 $d_v \leq d_u + w(u, v)$ for each $(u, v) \in E$

• d_u is the weight of the path from *s* to *u*

- Problem: Given a graph G = (V, E) with a weight function $w : E \to \mathbb{R}$, a source vertex $s \in V$ and a target vertex $t \in V$, find d_t , the weight of the shortest path from s to t
- Linear program: maximize *d*_t subject to the following constraints:

$$d_s = 0$$
 $d_v \leq d_u + w(u, v)$ for each $(u, v) \in E$

- d_u is the weight of the path from *s* to *u*
- Note: $\overline{d_v} = \min_{u \text{ s.t. } (u,v) \in E} \{ \overline{d_u} + w(u,v) \}$ so $\overline{d_v}$ is the maximal value smaller than all the values in $\{ \overline{d_u} + w(u,v) \}$ so we need to maximize $\overline{d_v}$ (the minimization nature of the problem is given by the constraints)

MAXIMUM FLOW AS LINEAR PROGRAM

- Flow network: graph G = (V, E) with a capacity function c : E → ℝ⁺ and two designated vertices s, t ∈ V such that (u, v) ∈ E ⇒ (v, u) ∉ E
 - Convenient abuse of notation: c(u, v) = 0 whenever $(u, v) \notin E$
- Flow in G: function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following constraints
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$ for all $u, v \in V$
 - Flow conservation: $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$ for all $u \in V \setminus \{s, t\}$
- Problem: Given a flow network, find a flow that maximizes f(s, t)
- Linear program: maximize ∑_{v∈V} f_{sv} − ∑_{v∈V} f_{vs} subject to the following constraints:

$$\begin{split} f_{uv} \leqslant c(u,v) & \text{for each} \quad u,v \in V \\ \sum_{v \in V} f_{vu} &= \sum_{v \in V} f_{uv} & \text{for each} \quad u \in V \setminus \{s,t\} \\ f_{uv} \geqslant 0 & \text{for each} \quad u,v \in V \end{split}$$

MULTICOMMODITY FLOW

- Input: a flow network G = (V, E) with capacity function c
- Additional input: Commodities *K*₁, *K*₂, ..., *K*_k
 - $K_i = (s_i, t_i, d_i)$ where s_i/t_i are the source/target vertices for K_i , and d_i is the demand (desired flow value) for K_i
 - Aggregate flow: $f_{uv} = \sum_{i=1}^{k} f_{iuv}$, where f_{iuv} is the flow for K_i from u to v
- Problem: Given a flow network and k commodities, determine whether there exists an aggregate flow f such that f_{uv} ≤ c(u, v) for all (u, v) ∈ E

MULTICOMMODITY FLOW

- Input: a flow network G = (V, E) with capacity function c
- Additional input: Commodities *K*₁, *K*₂, ..., *K*_k
 - $K_i = (s_i, t_i, d_i)$ where s_i/t_i are the source/target vertices for K_i , and d_i is the demand (desired flow value) for K_i
 - Aggregate flow: $f_{uv} = \sum_{i=1}^{k} f_{iuv}$, where f_{iuv} is the flow for K_i from u to v
- Problem: Given a flow network and k commodities, determine whether there exists an aggregate flow f such that f_{uv} ≤ c(u, v) for all (u, v) ∈ E
- Linear program: maximize 0 subject to the following constraints:

$$\sum_{i=1}^{k} f_{iuv} \leqslant c(u, v) \quad \text{for each} \quad u, v \in V$$
$$\sum_{v \in V} f_{iuv} - \sum_{e \in V} f_{ivu} = 0 \quad \text{for each} \quad u \in V \setminus \{s, t\}$$
$$\sum_{v \in V} f_{is_iv} = \sum_{v \in V} f_{ivs_i} = d_i \quad \text{for each} \quad 1 \leqslant i \leqslant k$$
$$f_{iuv} \ge 0 \quad \text{for each} \quad u, v \in V \text{ and } 1 \leqslant i \leqslant k$$

 Solving multicommodity flow as a linear programming problem is the only known efficient algorithm for this problem A slack form is a tuple (N, B, A, b, c, ν) which denotes the following linear program

$$egin{array}{rcl} z &=&
u + \sum_{j \in N} c_j x_j \ x_i &=& b_i - \sum_{j \in N} a_{ij} x_j & ext{ for } i \in B \end{array}$$

with the implicit understanding that $x_i \ge 0$ for all $i \in N \cup B$

- *N* contains the indices of all nonbasic variables, |N| = n
- *B* contains the indices of all basic variable, |B| = m

•
$$N \cup B = \{1, 2, \dots, n+m\}$$

One iteration = pivot operation

- Set all the nonbasic variables to 0, solve for the basic variables = basic solution
- Select a nonbasic variable x_e with positive coefficient (entering variable) in the objective function and increase its value as much as possible without constraint violation
- The above increase makes one basic variable x_l zero (the leaving variable)
- Seformulate the constraints such that x_e becomes basic and x_l nonbasic
- If all the coefficients c_j are negative then the current basic solution is the optimal solution, otherwise repeat from Step 1

THE PIVOT ALGORITHM

Algorithm PIVOT((N, B, A, b, c, ν), I, e) returns (N', B', A', b', c', ν')

Compute the coefficients of the equation for new basic variable x_e:

●
$$b'_e \leftarrow b_l/a_{le}$$

② for each $j \in N \setminus \{e\}$ do $a'_{ej} \leftarrow a_{lj}/a_{le}$
③ $a'_l \leftarrow 1/a_l$

• Compute the coefficients of the remaining constraints:

- for each $i \in B \setminus \{I\}$ do • $b'_i \leftarrow b_i - a_{ie}b'_e$ • for each $j \in N \setminus \{e\}$ do $a'_{ij} \leftarrow a_{ij} - a_{ie}a'_{ej}$ • $a'_{il} \leftarrow -a_{ie}a'_{el}$
- Compute the objective function:

$$\begin{array}{l} \bullet & \nu' \leftarrow \nu + c_e b'_e \\ \hline \bullet & \text{for each } j \in N \setminus \{e\} \text{ do } c'_j \leftarrow c_j - c_e a'_{ej} \\ \hline \bullet & c'_i \leftarrow -c_e a'_{ei} \\ \end{array}$$

• Compute the new basic and nonbasic variables:

$$N' \leftarrow N \setminus \{e\} \cup \{l\}$$

$$B' \leftarrow B \setminus \{l\} \cup \{e\}$$

THE SIMPLEX ALGORITHM

Algorithm SIMPLEX(A, b, c) returns $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$

- $(N, B, A, b, c, \nu) \leftarrow \text{INITIALIZE-SIMPLEX}(A, b, c)$
- (a) let Δ be a vector of size n
- **(a)** while some index $j \in N$ has $c_j > 0$
 - choose an index $e \in N$ such that $c_e > 0$
 - **2** for each $i \in B$ do
 - if $a_{ie} > 0$ then $\Delta_i \leftarrow b_i / a_{ie}$ else $\Delta_i \leftarrow \infty$
 - **③** choose $I \in B$ such that Δ_I is minimum over Δ_i
 - (a) if $\Delta_l = \infty$ then return "unbounded"
 - **③** else (N, B, A, b, c, ν) ← PIVOT $((N, B, A, b, c, \nu), I, e)$
- I for i ← 1 to n do
 - if $i \in B$ then $\overline{x}_i \leftarrow b_i$ else $\overline{x}_i \leftarrow 0$
- Input is a linear program in standard form
- INITIALIZE-SIMPLEX returns a slack form for which the initial basic solution is feasible (or a suitable message if the linear program is infeasible)

Lemma

Let L be a program in standard form and x_0 a new variable. Let L_{aux} be: Maximize $-x_0$ subject to $\sum_{i=1}^{n} a_{ij}x_j - x_0 \le b_i$ for $1 \le i \le m$ and $x_j \ge 0$ for $0 \le j \le n$

Then L is feasible iff the optimal objective value for L_{aux} is 0.

INITIALIZE-SIMPLEX then works as follows:

- Let b_k be the minimum b_i
- If $b_k \ge 0$ then the initial solution is feasible so convert to slack and return
- Form L_{aux} as in the lemma, convert it to the slack form (N, B, A, b, c, ν)
- Let *I* = *n* + *k* and perform PIVOT((*N*, *B*, *A*, *b*, *c*, *ν*), *I*, 0); the basic solution is now feasible for *L_{aux}*
- Use the while loop of SIMPLEX to find an optimal solution for L_{aux} ; return "infeasible" if $\overline{x}_0 \neq 0$
- Remove *x*⁰ from the constraints, restore the original objective function for *L*, but replace basic variables with the right hand side of its constraint
- Return this final slack form

Theorem

If SIMPLEX fails to terminate in at most $\binom{n+m}{m}$ iterations then it cycles. So SIMPLEX either reports that the linear program is unbounded or terminates with a feasible solution in at most $\binom{n+m}{m}$ iterations

Theorem (Fundamental theorem of linear programming)

Any linear program L given in standard form either:

- has an optimal solution with a finite objective value,
- is infeasible, or
- is unbounded.

If L is infeasible or unbounded, then SIMPLEX returns "infeasible" or "unbounded", respectively. Otherwise SIMPLEX returns an optimal solution with a finite value.