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LINEAR PROGRAMMING

Linear function: f px1, x2, . . . xnq “
∑n

j´1 ajxj
Linear constraint: gpx1, . . . , xnq ‚ b for some linear function g and either
‚ ““ (linear equality) or ‚ P {ď,ě} (linear inequalities)
A linear programming problem is the problem of optimizing (minimizing or
maximizing) a linear function subject to a finite set of linear constraints;
an instance of this problem is a linear program

Solving 2-variable optimization problems:
The linear constraints form a convex region in the px1, x2q-Cartesian
coordinate system (the simplex)
The set of points f px1, x2q “ z form a line whose slope is independent of z
The goal becomes finding the optimal (maximal/minimal) z with a non-empty
intersection between the simplex and the line, which always corresponds to
a vertex of the simplex if the simplex is bounded
The simplex algorithm starts form an arbitrary vertex of the simplex, keeps
moving to a neighbor whose value is no smaller/larger than that of the
current vertex
The algorithm terminates when it reaches a local maximum/minimum (a
vertex with all the neighbors having a smaller/larger objective value)
This is also the global maximum/minimum

because the simplex is convex

Idea can be trivially generalized to an n-dimensional spaces
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THE STANDARD FORMS OF LINEAR PROGRAMS

Standard form: Given n real numbers ci , 1 ď i ď n and mn real numbers
aij , 1 ď i ď m, 1 ď j ď n, find n real numbers xi , 1 ď i ď n that:

maximize the objective function
∑n

j“1 cjxj

subject to the constraints
∑n

j“1 aijxj ď bi , 1 ď i ď m and xj ě 0, 1 ď i ď n

Slack form: all constraints are either equality constraints or xj ě 0
Terminology for linear programs:

An assignment x of the variables xi , 1 ď i ď n can be a feasible solution
(satisfies all constraints) or an infeasible solution (violates at least one
constraint)
A solution x has the objective value cT x
A solution x whose cT x is the maximum of all the feasible solutions is an
optimal solution and its cT x is the optimal objective value
If a linear program does not have any feasible solutions then it is infeasible,
otherwise it is feasible
If a linear program does not have a finite optimal objective value then it is
unbounded
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CONVERSION TO STANDARD AND SLACK FORMS

Conversion to standard form:
To convert a minimization instance into a maximization instance: negate all
the coefficients in the objective function
If some variable xj does not have the constraint xj ě 0:

Replace every occurrence of xj with x 1
j ´ x2

j
Add the constraints x 1

j ě 0 and x2
j ě 0

If we have an equality constraint gpx1, . . . , xnq “ b: replace it with two
constraints gpx1, . . . , xnq ě b and gpx1, . . . , xnq ď b
If we have a constraint gpx1, . . . , xnq ě b: we multiply both sides with (-1)
(and we flip the comparison, and we distribute the (-1) into the sum)

Conversion of standard form into slack form:
Each constraint

∑n
j“1 aijxj ď bi is rewritten as the two constraints

s “ bi ´

n∑
j“1

aijxj s ě 0

s is a new variable (slack or basic variable as opposed to a nonbasic
variable). . . that just does not happen to appear in the objective function
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SHORTEST PATH AS LINEAR PROGRAM

Problem: Given a graph G “ pV ,Eq with a weight function w : E Ñ R, a
source vertex s P V and a target vertex t P V , find dt , the weight of the
shortest path from s to t
Linear program: maximize dt subject to the following constraints:

ds “ 0 dv ď du ` wpu, vq for each pu, vq P E

du is the weight of the path from s to u

Note: dv “ minu s.t. pu,vqPE{du ` wpu, vq} so dv is the maximal value smaller
than all the values in {du ` wpu, vq} so we need to maximize dv (the
minimization nature of the problem is given by the constraints)
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MAXIMUM FLOW AS LINEAR PROGRAM

Flow network: graph G “ pV ,Eq with a capacity function c : E Ñ R
` and

two designated vertices s, t P V such that pu, vq P E ñ pv ,uq R E
Convenient abuse of notation: cpu, vq “ 0 whenever pu, vq R E

Flow in G: function f : V ˆ V Ñ R satisfying the following constraints
Capacity constraint: 0 ď f pu, vq ď cpu, vq for all u, v P V
Flow conservation:

∑
vPV f pv , uq “

∑
vPV f pu, vq for all u P V z{s, t}

Problem: Given a flow network, find a flow that maximizes f ps, tq
Linear program: maximize

∑
vPV fsv ´

∑
vPV fvs subject to the following

constraints:

fuv ď cpu, vq for each u, v P V∑
vPV

fvu “
∑
vPV

fuv for each u P V z{s, t}

fuv ě 0 for each u, v P V
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MULTICOMMODITY FLOW

Input: a flow network G “ pV ,Eq with capacity function c
Additional input: Commodities K1, K2, . . . , Kk

Ki “ psi , ti , di q where si /ti are the source/target vertices for Ki , and di is the
demand (desired flow value) for Ki

Aggregate flow: fuv “
∑k

i“1 fiuv , where fiuv is the flow for Ki from u to v
Problem: Given a flow network and k commodities, determine whether
there exists an aggregate flow f such that fuv ď cpu, vq for all pu, vq P E

Linear program: maximize 0 subject to the following constraints:
k∑

i“1

fiuv ď cpu, vq for each u, v P V∑
vPV

fiuv ´
∑
PV

fivu “ 0 for each u P V z{s, t}∑
vPV

fisi v “
∑
vPV

fivsi “ di for each 1 ď i ď k

fiuv ě 0 for each u, v P V and 1 ď i ď k

Solving multicommodity flow as a linear programming problem is the only
known efficient algorithm for this problem
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SLACK FORM AS INPUT

A slack form is a tuple pN,B,A,b, c, νq which denotes the following linear
program

z “ ν `
∑
jPN

cjxj

xi “ bi ´
∑
jPN

aijxj for i P B

with the implicit understanding that xi ě 0 for all i P N Y B
N contains the indices of all nonbasic variables, |N| “ n
B contains the indices of all basic variable, |B| “ m
N Y B “ {1, 2, . . . , n ` m}
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THE SIMPLEX ALGORITHM: ALGEBRAIC IDEA

One iteration = pivot operation
1 Set all the nonbasic variables to 0, solve for the basic variables = basic

solution
2 Select a nonbasic variable xe with positive coefficient (entering variable)

in the objective function and increase its value as much as possible
without constraint violation

3 The above increase makes one basic variable xl zero (the leaving
variable)

4 Reformulate the constraints such that xe becomes basic and xl nonbasic
5 If all the coefficients cj are negative then the current basic solution is the

optimal solution, otherwise repeat from Step 1

CS CS 467/567 (S. D. Bruda) Winter 2023 8 / 12



THE PIVOT ALGORITHM

Algorithm PIVOT(pN,B,A,b, c, νq, l , e) returns pN 1,B1,A1,b1, c1, ν1q

Compute the coefficients of the equation for new basic variable xe:
1 b1

e Ð bl {ale
2 for each j P Nz{e} do a1

ej Ð alj {ale
3 a1

el Ð 1{ale

Compute the coefficients of the remaining constraints:
1 for each i P Bz{l} do

1 b1
i Ð bi ´ aieb1

e
2 for each j P Nz{e} do a1

ij Ð aij ´ aiea1
ej

3 a1
il Ð ´aiea1

el

Compute the objective function:
1 ν1

Ð ν ` ceb1
e

2 for each j P Nz{e} do c1
j Ð cj ´ cea1

ej
3 c1

l Ð ´cea1
el

Compute the new basic and nonbasic variables:
1 N 1

Ð Nz{e} Y {l}
2 B1

Ð Bz{l} Y {e}
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THE SIMPLEX ALGORITHM

Algorithm SIMPLEX(A, b, c) returns px1, x2, . . . , xnq

1 pN,B,A,b, c, νq Ð INITIALIZE-SIMPLEXpA,b, cq

2 let ∆ be a vector of size n
3 while some index j P N has cj ą 0

1 choose an index e P N such that ce ą 0
2 for each i P B do

if aie ą 0 then ∆i Ð bi {aie else ∆i Ð 8

3 choose l P B such that ∆l is minimum over ∆i
4 if ∆l “ 8 then return “unbounded”
5 else pN,B,A, b, c, νq Ð PIVOTppN,B,A, b, c, νq, l , eq

4 for i Ð 1 to n do
1 if i P B then x i Ð bi else x i Ð 0

Input is a linear program in standard form
INITIALIZE-SIMPLEX returns a slack form for which the initial basic
solution is feasible (or a suitable message if the linear program is
infeasible)
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THE INITIALIZE-SIMPLEX ALGORITHM

Lemma
Let L be a program in standard form and x0 a new variable. Let Laux be:

Maximize ´x0
subject to

∑n
j“1 aijxj ´ x0 ď bi for 1 ď i ď m and xj ě 0 for 0 ď j ď n

Then L is feasible iff the optimal objective value for Laux is 0.

INITIALIZE-SIMPLEX then works as follows:
Let bk be the minimum bi

If bk ě 0 then the initial solution is feasible so convert to slack and return
Form Laux as in the lemma, convert it to the slack form pN,B,A,b, c, νq

Let l “ n ` k and perform PIVOT(pN,B,A,b, c, νq, l , 0); the basic solution
is now feasible for Laux

Use the while loop of SIMPLEX to find an optimal solution for Laux ; return
“infeasible” if x0 ‰ 0
Remove x0 from the constraints, restore the original objective function for
L, but replace basic variables with the right hand side of its constraint
Return this final slack form
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PROPERTIES OF THE SIMPLEX ALGORITHM

Theorem

If SIMPLEX fails to terminate in at most
(

n ` m
m

)
iterations then it cycles.

So SIMPLEX either reports that the linear program is unbounded or terminates

with a feasible solution in at most
(

n ` m
m

)
iterations

Theorem (Fundamental theorem of linear programming)
Any linear program L given in standard form either:

1 has an optimal solution with a finite objective value,
2 is infeasible, or
3 is unbounded.

If L is infeasible or unbounded, then SIMPLEX returns “infeasible” or
“unbounded”, respectively. Otherwise SIMPLEX returns an optimal solution
with a finite value.
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