CS 467/567: Linear Programming

Stefan D. Bruda

Winter 2023

LINEAR PROGRAMMING

- Linear function: $f\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sum_{j-1}^{n} a_{j} x_{j}$
- Linear constraint: $g\left(x_{1}, \ldots, x_{n}\right) \bullet b$ for some linear function g and either $\bullet==$ (linear equality) or $\bullet \in\{\leqslant, \geqslant\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program

LINEAR PROGRAMMING

- Linear function: $f\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sum_{j-1}^{n} a_{j} x_{j}$
- Linear constraint: $g\left(x_{1}, \ldots, x_{n}\right) \bullet b$ for some linear function g and either $\bullet==$ (linear equality) or $\bullet \in\{\leqslant, \geqslant\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program
- Solving 2-variable optimization problems:
- The linear constraints form a convex region in the $\left(x_{1}, x_{2}\right)$-Cartesian coordinate system (the simplex)
- The set of points $f\left(x_{1}, x_{2}\right)=z$ form a line whose slope is independent of z
- The goal becomes finding the optimal (maximal/minimal) z with a non-empty intersection between the simplex and the line, which always corresponds to a vertex of the simplex if the simplex is bounded
- The simplex algorithm starts form an arbitrary vertex of the simplex, keeps moving to a neighbor whose value is no smaller/larger than that of the current vertex
- The algorithm terminates when it reaches a local maximum/minimum (a vertex with all the neighbors having a smaller/larger objective value)
- This is also the global maximum/minimum

LINEAR PROGRAMMING

- Linear function: $f\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sum_{j-1}^{n} a_{j} x_{j}$
- Linear constraint: $g\left(x_{1}, \ldots, x_{n}\right) \bullet b$ for some linear function g and either $\bullet==$ (linear equality) or $\bullet \in\{\leqslant, \geqslant\}$ (linear inequalities)
- A linear programming problem is the problem of optimizing (minimizing or maximizing) a linear function subject to a finite set of linear constraints; an instance of this problem is a linear program
- Solving 2-variable optimization problems:
- The linear constraints form a convex region in the $\left(x_{1}, x_{2}\right)$-Cartesian coordinate system (the simplex)
- The set of points $f\left(x_{1}, x_{2}\right)=z$ form a line whose slope is independent of z
- The goal becomes finding the optimal (maximal/minimal) z with a non-empty intersection between the simplex and the line, which always corresponds to a vertex of the simplex if the simplex is bounded
- The simplex algorithm starts form an arbitrary vertex of the simplex, keeps moving to a neighbor whose value is no smaller/larger than that of the current vertex
- The algorithm terminates when it reaches a local maximum/minimum (a vertex with all the neighbors having a smaller/larger objective value)
- This is also the global maximum/minimum because the simplex is convex
- Idea can be trivially generalized to an n-dimensional spaces

THE STANDARD FORMS OF LINEAR PROGRAMS

- Standard form: Given n real numbers $c_{i}, 1 \leqslant i \leqslant n$ and $m n$ real numbers $a_{i j}, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$, find n real numbers $x_{i}, 1 \leqslant i \leqslant n$ that:
- maximize the objective function $\sum_{j=1}^{n} c_{j} x_{j}$
- subject to the constraints $\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}, 1 \leqslant i \leqslant m$ and $x_{j} \geqslant 0,1 \leqslant i \leqslant n$
- Slack form: all constraints are either equality constraints or $x_{j} \geqslant 0$
- Terminology for linear programs:
- An assignment \bar{x} of the variables $x_{i}, 1 \leqslant i \leqslant n$ can be a feasible solution (satisfies all constraints) or an infeasible solution (violates at least one constraint)
- A solution \bar{x} has the objective value $c^{T} \bar{x}$
- A solution \bar{x} whose $c^{T} \bar{x}$ is the maximum of all the feasible solutions is an optimal solution and its $c^{T} \bar{x}$ is the optimal objective value
- If a linear program does not have any feasible solutions then it is infeasible, otherwise it is feasible
- If a linear program does not have a finite optimal objective value then it is unbounded

CONVERSION TO STANDARD AND SLACK FORMS

- Conversion to standard form:
- To convert a minimization instance into a maximization instance: negate all the coefficients in the objective function
- If some variable x_{j} does not have the constraint $x_{j} \geqslant 0$:
- Replace every occurrence of x_{j} with $x_{j}^{\prime}-x_{j}^{\prime \prime}$
- Add the constraints $x_{j}^{\prime} \geqslant 0$ and $x_{j}^{\prime \prime} \geqslant 0$
- If we have an equality constraint $g\left(x_{1}, \ldots, x_{n}\right)=b$: replace it with two constraints $g\left(x_{1}, \ldots, x_{n}\right) \geqslant b$ and $g\left(x_{1}, \ldots, x_{n}\right) \leqslant b$
- If we have a constraint $g\left(x_{1}, \ldots, x_{n}\right) \geqslant b$: we multiply both sides with (-1) (and we flip the comparison, and we distribute the (-1) into the sum)

CONVERSION TO STANDARD AND SLACK FORMS

- Conversion to standard form:
- To convert a minimization instance into a maximization instance: negate all the coefficients in the objective function
- If some variable x_{j} does not have the constraint $x_{j} \geqslant 0$:
- Replace every occurrence of x_{j} with $x_{j}^{\prime}-x_{j}^{\prime \prime}$
- Add the constraints $x_{j}^{\prime} \geqslant 0$ and $x_{j}^{\prime \prime} \geqslant 0$
- If we have an equality constraint $g\left(x_{1}, \ldots, x_{n}\right)=b$: replace it with two constraints $g\left(x_{1}, \ldots, x_{n}\right) \geqslant b$ and $g\left(x_{1}, \ldots, x_{n}\right) \leqslant b$
- If we have a constraint $g\left(x_{1}, \ldots, x_{n}\right) \geqslant b$: we multiply both sides with (-1) (and we flip the comparison, and we distribute the (-1) into the sum)
- Conversion of standard form into slack form:
- Each constraint $\sum_{j=1}^{n} a_{i j} x_{j} \leqslant b_{i}$ is rewritten as the two constraints

$$
s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad s \geqslant 0
$$

- s is a new variable (slack or basic variable as opposed to a nonbasic variable)... that just does not happen to appear in the objective function

SHORTEST PATH AS LINEAR PROGRAM

- Problem: Given a graph $G=(V, E)$ with a weight function $w: E \rightarrow \mathbb{R}$, a source vertex $s \in V$ and a target vertex $t \in V$, find d_{t}, the weight of the shortest path from s to t
- Linear program: maximize d_{t} subject to the following constraints:

$$
d_{s}=0 \quad d_{v} \leqslant d_{u}+w(u, v) \text { for each }(u, v) \in E
$$

- d_{u} is the weight of the path from s to u

Shortest path as linear program

- Problem: Given a graph $G=(V, E)$ with a weight function $w: E \rightarrow \mathbb{R}$, a source vertex $s \in V$ and a target vertex $t \in V$, find d_{t}, the weight of the shortest path from s to t
- Linear program: maximize d_{t} subject to the following constraints:

$$
d_{s}=0 \quad d_{v} \leqslant d_{u}+w(u, v) \text { for each }(u, v) \in E
$$

- d_{u} is the weight of the path from s to u
- Note: $\overline{d_{v}}=\min _{u \text { s.t. }(u, v) \in E}\left\{\bar{d}_{u}+w(u, v)\right\}$ so $\overline{d_{v}}$ is the maximal value smaller than all the values in $\left\{\overline{d_{u}}+w(u, v)\right\}$ so we need to maximize $\overline{d_{v}}$ (the minimization nature of the problem is given by the constraints)

MAXIMUM FLOW AS LINEAR PROGRAM

- Flow network: graph $G=(V, E)$ with a capacity function $c: E \rightarrow \mathbb{R}^{+}$and two designated vertices $s, t \in V$ such that $(u, v) \in E \Rightarrow(v, u) \notin E$
- Convenient abuse of notation: $c(u, v)=0$ whenever $(u, v) \notin E$
- Flow in G : function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following constraints
- Capacity constraint: $0 \leqslant f(u, v) \leqslant c(u, v)$ for all $u, v \in V$
- Flow conservation: $\sum_{v \in V} f(v, u)=\sum_{v \in V} f(u, v)$ for all $u \in V\{s, t\}$
- Problem: Given a flow network, find a flow that maximizes $f(s, t)$
- Linear program: maximize $\sum_{v \in V} f_{s v}-\sum_{v \in V} f_{v s}$ subject to the following constraints:

$$
\begin{array}{rll}
f_{u v} \leqslant c(u, v) & \text { for each } & u, v \in V \\
\sum_{v \in V} f_{v u}=\sum_{v \in V} f_{u v} & \text { for each } & u \in V\{s, t\} \\
f_{u v} \geqslant 0 & \text { for each } & u, v \in V
\end{array}
$$

MULTICOMMODITY FLOW

- Input: a flow network $G=(V, E)$ with capacity function c
- Additional input: Commodities $K_{1}, K_{2}, \ldots, K_{k}$
- $K_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ where s_{i} / t_{i} are the source/target vertices for K_{i}, and d_{i} is the demand (desired flow value) for K_{i}
- Aggregate flow: $f_{u v}=\sum_{i=1}^{k} f_{i u v}$, where $f_{i u v}$ is the flow for K_{i} from u to v
- Problem: Given a flow network and k commodities, determine whether there exists an aggregate flow f such that $f_{u v} \leqslant c(u, v)$ for all $(u, v) \in E$

MULTICOMMODITY FLOW

- Input: a flow network $G=(V, E)$ with capacity function c
- Additional input: Commodities $K_{1}, K_{2}, \ldots, K_{k}$
- $K_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ where s_{i} / t_{i} are the source/target vertices for K_{i}, and d_{i} is the demand (desired flow value) for K_{i}
- Aggregate flow: $f_{u v}=\sum_{i=1}^{k} f_{i u v}$, where $f_{i u v}$ is the flow for K_{i} from u to v
- Problem: Given a flow network and k commodities, determine whether there exists an aggregate flow f such that $f_{u v} \leqslant c(u, v)$ for all $(u, v) \in E$
- Linear program: maximize 0 subject to the following constraints:

$$
\begin{array}{rll}
\sum_{i=1}^{k} f_{i u v} \leqslant c(u, v) & \text { for each } & u, v \in V \\
\sum_{v \in V} f_{i u v}-\sum_{\in V} f_{i v u}=0 & \text { for each } & u \in V \backslash\{s, t\} \\
\sum_{v \in V} f_{i s_{i} v}=\sum_{v \in V} f_{i v s_{i}}=d_{i} & \text { for each } & 1 \leqslant i \leqslant k \\
f_{i u v} \geqslant 0 & \text { for each } & u, v \in V \text { and } 1 \leqslant i \leqslant k
\end{array}
$$

- Solving multicommodity flow as a linear programming problem is the only known efficient algorithm for this problem

SLACK FORM AS INPUT

- A slack form is a tuple (N, B, A, b, c, ν) which denotes the following linear program

$$
\begin{aligned}
& z=\nu+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } i \in B
\end{aligned}
$$

with the implicit understanding that $x_{i} \geqslant 0$ for all $i \in N \cup B$

- N contains the indices of all nonbasic variables, $|N|=n$
- B contains the indices of all basic variable, $|B|=m$
- $N \cup B=\{1,2, \ldots, n+m\}$

One iteration = pivot operation
(1) Set all the nonbasic variables to 0 , solve for the basic variables = basic solution
(2) Select a nonbasic variable x_{e} with positive coefficient (entering variable) in the objective function and increase its value as much as possible without constraint violation
(3) The above increase makes one basic variable x_{l} zero (the leaving variable)
(9) Reformulate the constraints such that x_{e} becomes basic and x_{l} nonbasic
(5) If all the coefficients c_{j} are negative then the current basic solution is the optimal solution, otherwise repeat from Step 1

Algorithm $\operatorname{Pivot}((N, B, A, b, c, \nu), I, e)$ returns $\left(N^{\prime}, B^{\prime}, A^{\prime}, b^{\prime}, c^{\prime}, \nu^{\prime}\right)$

- Compute the coefficients of the equation for new basic variable x_{e} :
(1) $b_{e}^{\prime} \leftarrow b_{l} / a_{l e}$
(2) for each $j \in M\{e\}$ do $a_{e j}^{\prime} \leftarrow a_{l j} / a_{l e}$
(3) $a_{e l}^{\prime} \leftarrow 1 / a_{l e}$
- Compute the coefficients of the remaining constraints:
(1) for each $i \in B \backslash\{I\}$ do
(1) $b_{i}^{\prime} \leftarrow b_{i}-a_{i e} b_{e}^{\prime}$
(2) for each $j \in N \backslash\{e\}$ do $a_{i j}^{\prime} \leftarrow a_{i j}-a_{i e} a_{e j}^{\prime}$
(3) $a_{i l}^{\prime} \leftarrow-a_{i e} a_{e l}^{\prime}$
- Compute the objective function:
(1) $\nu^{\prime} \leftarrow \nu+c_{e} b_{e}^{\prime}$
(2) for each $j \in M\{e\}$ do $c_{j}^{\prime} \leftarrow c_{j}-c_{e} a_{e j}^{\prime}$
(3) $c_{l}^{\prime} \leftarrow-c_{e} a_{e l}^{\prime}$
- Compute the new basic and nonbasic variables:
(1) $N^{\prime} \leftarrow M\{e\} \cup\{1\}$
(2) $B^{\prime} \leftarrow B \backslash\{1\} \cup\{e\}$

The Simplex algorithm

Algorithm $\operatorname{Simplex}(A, b, c)$ returns $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)$
(1) $(N, B, A, b, c, \nu) \leftarrow \operatorname{Initialize-Simplex}(A, b, c)$
(2) let Δ be a vector of size n
(3) while some index $j \in N$ has $c_{j}>0$
(0) choose an index $e \in N$ such that $c_{e}>0$
(2) for each $i \in B$ do if $a_{i e}>0$ then $\Delta_{i} \leftarrow b_{i} / a_{i e}$ else $\Delta_{i} \leftarrow \infty$
(0) choose $I \in B$ such that Δ_{l} is minimum over Δ_{i}
(0) if $\Delta_{l}=\infty$ then return "unbounded"
(0) else $(N, B, A, b, c, \nu) \leftarrow \operatorname{Pivot}((N, B, A, b, c, \nu), l, e)$
(3) for $i \leftarrow 1$ to n do
(1) if $i \in B$ then $\bar{x}_{i} \leftarrow b_{i}$ else $\bar{x}_{i} \leftarrow 0$

- Input is a linear program in standard form
- Initialize-Simplex returns a slack form for which the initial basic solution is feasible (or a suitable message if the linear program is infeasible)

THE INITIALIZE-SIMPLEX ALGORITHM

Lemma

Let L be a program in standard form and x_{0} a new variable. Let $L_{\text {aux }}$ be:
Maximize - x_{0}
subject to $\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leqslant b_{i}$ for $1 \leqslant i \leqslant m$ and $x_{j} \geqslant 0$ for $0 \leqslant j \leqslant n$
Then L is feasible iff the optimal objective value for $L_{\text {aux }}$ is 0 .
INITIALIZE-SIMPLEX then works as follows:

- Let b_{k} be the minimum b_{i}
- If $b_{k} \geqslant 0$ then the initial solution is feasible so convert to slack and return
- Form $L_{\text {aux }}$ as in the lemma, convert it to the slack form (N, B, A, b, c, ν)
- Let $I=n+k$ and perform $\operatorname{PivOT}((N, B, A, b, c, \nu), I, 0)$; the basic solution is now feasible for $L_{\text {aux }}$
- Use the while loop of SIMPLEX to find an optimal solution for $L_{\text {aux }}$; return "infeasible" if $\bar{x}_{0} \neq 0$
- Remove x_{0} from the constraints, restore the original objective function for L, but replace basic variables with the right hand side of its constraint
- Return this final slack form

Properties of the Simplex algorithm

Theorem

If SIMPLEX fails to terminate in at most $\binom{n+m}{m}$ iterations then it cycles.
So SIMPLEX either reports that the linear program is unbounded or terminates with a feasible solution in at most $\binom{n+m}{m}$ iterations

Theorem (Fundamental theorem of linear programming)

Any linear program L given in standard form either:
(1) has an optimal solution with a finite objective value,
(2) is infeasible, or
(3) is unbounded.

If L is infeasible or unbounded, then SIMPLEX returns "infeasible" or "unbounded", respectively. Otherwise SIMPLEX returns an optimal solution with a finite value.

