PROBLEMS EVERYWHERE

CS 467/567: NP-complete problems

Stefan D. Bruda

Winter 2023

- Abstract problem: relation Q over the set / of problem instances and the set S of problem solutions: $Q \subseteq I \times S$
- Complexity theory deals with decision problems or languages $(S=\{0,1\})$
- Technically a language is a set of strings
- A problem $Q \subseteq I \times\{0,1\}$ ca be rewritten as the language (set) $L(Q)=\{w \in I:(w, 1) \in Q\}$
- Many abstract problems are optimization problems instead; however, we can usually restate an optimization problem as a decision problem which require the same amount of resources to solve
- Concrete problem: an abstract decision problem with $I=\{0,1\}^{*}$
- Abstract problem mapped on concrete problem using an encoding $e: l \rightarrow\{0,1\}^{*}$
- $Q \subseteq I \times\{0,1\}$ mapped to the concrete problem $e(Q) \subseteq e(I) \times\{0,1\}$
- Encodings will not affect the performance of an algorithm as long as they are polynomially related
- An algorithm solves a concrete problem in time $O(T(n))$ whenever the algorithm produces in $O(T(n))$ time a solution for any problem instance i with $|i|=n$

LANGUAGES? PROBLEMS?

- Complexity theory analyzes problems from the perspective of how many resources (e.g., time, storage) are necessary to solve them
- Given some abstract problem that requires certain resource (time) bounds to solve, it is generally easy to find a language that requires the same resource bounds to decide
- Sometime (but not always) finding an algorithm for deciding the language immediately implies an algorithm for solving the problem
- Traveling salesman (TSP): Given $n \geqslant 2$, a matrix $\left(d_{i j}\right)_{1 \leqslant i, j \leqslant n}$ with $d_{i j}>0$ and $d_{i j}=0$, find a permutation π of $\{1,2, \ldots, n\}$ such that $c(\pi)$, the cost of π is minimal, where $c(\pi)=d_{\pi_{1} \pi_{2}}+d_{\pi_{2} \pi_{3}}+\cdots+d_{\pi_{n-1} \pi_{n}}+d_{\pi_{n} \pi_{1}}$
- TSP the language (take 1$):\left\{\left(\left(d_{i j}\right)_{1 \leqslant i, j \leqslant n}, B\right): n \geqslant 2, B \geqslant 0\right.$, there exists a permutation π such that $c(\pi) \leqslant B\}$
- TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs that have a (Hamiltonian) cycle that goes through all the vertices exactly once
- Note in passing: A cycle that uses all the edges exactly once is Eulerian; a graph G is Eulerian iff
There is a path between any two vertices that are not isolated, and
Every vertex has an in-degree equal to its out-degree

LANGUAGES? PROBLEMS? (CONT'D)

- Clique: Given an undirected graph $G=(V, E)$, find the maximal set $C \subseteq V$ such that $\forall v_{i}, v_{j} \in C:\left(v_{i}, v_{j}\right) \in E(C$ is a clique of $G)$
- Clique, the language: $\{(G=(V, E), K): K \geqslant 2$: there exists a clique C of V such that $|C| \geqslant K\}$
- SAT: Fix a set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let $\bar{X}=\left\{\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{n}}\right\}$
- An element of $X \cup \bar{X}$ is called a literal
- A formula (or set/conjunction of clauses) is $\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{m}$ where $\alpha_{i}=x_{a_{1}} \vee x_{a_{2}} \vee \cdots \vee x_{a_{k}}, 1 \leqslant i \leqslant m$, and $x_{a_{i}} \in X \cup X$
- An interpretation (or truth assignment) is a function $I: X \rightarrow\{\top, \perp\}$
- A formula F is satisfiable iff there exists an interpretation under which F evaluates to T.
- SAT $=\{F: F$ is satisfiable $\}$
- 2-SAT, 3-SAT are variants of SAT (with the number of literals in every clause restricted to a maximum of 2 and 3, respectively)
- Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF, $3-C N F)$ because the input formulae are written in conjunctive normal form
- Complexity class \mathcal{P} : the class of all the concrete problems that are solvable in polynomial time
- Meaning that for any problem in \mathcal{P} there exists an algorithm that solves it in $O\left(n^{k}\right)$ time for some constant $k \geqslant 0$
- For some $f: \mathbb{N} \rightarrow \mathbb{N}$, a Turing machine $M=(K, \Sigma, \Delta, s,\{h\})$ is f-time bounded iff for any $w \in \Sigma^{*}$: there is no configuration C such that $(s, \# w \#) \vdash_{M}^{f(|w|)+1} C$
- M is polynomially (time) bounded iff M is p-time bounded for some polynomial $p=O\left(n^{k}\right)$
- Problem p is polynomially solvable iff there exists a deterministic polynomially bounded Turing machine that solves $p \Rightarrow$ complexity class \mathcal{P}
- \mathcal{P} (as well as all the other complexity classes) are defined based on worst-case analysis
- Complexity class $\mathcal{N P}$: the class of exactly all the problems solvable by nondeterministic, polynomially bounded Turing machines
- Verification algorithm: An algorithm A with two inputs: an ordinary problem instance x and a certificate y
- A verifies the input x if there exists a certificate y such that $A(x, y)=1$
- The language verified by A is $L=\left\{x \in\{0,1\}^{*}: \exists y \in\{0,1\}^{*}: A(x, y)=1\right\}$
- A verifies L if for any string $x \in L$, there exists a certificate y that A can use to prove that $x \in L$; for any string $x \notin L$ there must be no certificate proving that $x \in L$
- Complexity class $\mathcal{N P}$: the class of all the problems verifiable in deterministic polynomial time
- $L \in \mathcal{N} \mathcal{P}$ iff there exists a polynomial verification algorithm A and a constant c such that $L=\left\{x \in\{0,1\}^{*}: \exists y \in\{0,1\}^{*}:|y|=O\left(|x|^{c}\right) \wedge A(x, y)=1\right\}$
- Complexity class $\mathcal{E X P}$: exactly all the problems solvable by exponentially-bounded, deterministic algorithms
- $\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \subseteq \mathcal{E X} \mathcal{P}$

POLYNOMIAL REDUCTIONS \& NP-COMPLETENESS

- A problem Q can be reduced to another problem Q^{\prime} if any instance of Q can be "easily rephrased" as an instance of Q^{\prime}
- If Q reduces to Q^{\prime} then Q is "not harder to solve" than Q^{\prime}
- Polynomial reduction: A language L_{1} is polynomial-time reducible to a language $L_{2}\left(L_{1} \leqslant p L_{2}\right)$ iff there exists a polynomial algorithm F that computes the function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

$$
\forall x \in\{0,1\}^{*}: x \in L_{1} \text { iff } f(x) \in L_{2}
$$

- Polynomial reductions show that a problem is not harder to solve than another within a polynomial-time factor

Lemma

$$
L_{1} \leqslant p L_{2} \wedge L_{2} \in P \Rightarrow L_{1} \in P
$$

- A problem L is NP-hard iff $\forall L^{\prime} \in \mathcal{N} \mathcal{P}: L^{\prime} \leqslant P L$
- A problem L is NP-complete $(L \in \mathcal{N} \mathcal{P C})$ iff L is NP-hard and $L \in \mathcal{N P}$

Theorem

Let L be some NP-complete problem; then $\mathcal{P}=\mathcal{N} \mathcal{P}$ iff $L \in \mathcal{P}$

- Tiling system: $\mathcal{D}=\left(D, d_{0}, H, V, s\right)$
- D is a finite set of tiles
- $d_{0} \in D$ is the initial corner tile
- $H, V \in D \times D$ are the horizontal and vertical tiling restrictions
- $s>0$ is a constant
- Tiling: $f: \mathbb{N}_{s} \times \mathbb{N}_{s} \rightarrow D$ such that
- $f(0,0)=d_{0}$
- $\forall 0 \leqslant m<s, 0 \leqslant n<s-1:(f(m, n), f(m, n+1)) \in V$
- $\forall 0 \leqslant m<s-1,0 \leqslant n<s:(f(m, n), f(m+1, n)) \in H$
- The bounded tiling problem:
- Given a tiling system \mathcal{D}, a positive integer s and an initial tiling $f_{0}: \mathbb{N}_{s} \rightarrow D$
- Find whether there exists a tiling function f that extends f_{0}
- Bounded tiling is in $\mathcal{N P}$ (why?)
(1) $\operatorname{SAT} \in \mathcal{N} \mathcal{P}$
- Nondeterministically guess an interpretation then check that the interpretation satisfies the formula
- Both of these take linear time
(2) SAT is NP-hard
- Reduction of bounded tiling to SAT
- Variables: $x_{n m d}$ standing for "tile d is at position (n, m) in the tiling"
- Construct clauses such that $x_{n m d}=\mathrm{T}$ iff $f(m, n)=d$
- First specify that we have a function:
- Each position has at least one tile: $\forall 0 \leqslant m, n \leqslant s: x_{m n d_{1}} \vee x_{m n d_{2}} \vee$.
- No more than one tile in a given position: $\forall 0 \leqslant m, n \leqslant s, d \neq d^{\prime}: \overline{x_{m n d}} \vee \overline{x_{m n d^{\prime}}}$
- Then specify the restrictions H and V :

$$
\text { - }\left(d, d^{\prime}\right) \in D^{2} \backslash H \Rightarrow \overline{x_{m n d}} \vee \overline{x_{m+1 n d^{\prime}}} \quad\left(d, d^{\prime}\right) \in D^{2} \backslash V \Rightarrow \overline{x_{m n d}} \vee \overline{x_{m n+1 d^{\prime}}}
$$

- 3-SAT is also NP-complete
- Need to find reductions from all problems in $\mathcal{N P}$ to bounded tiling
- The only thing in common to all the $\mathcal{N} \mathcal{P}$ problems is that each of them is decided by a nondeterministic, polynomially bounded Turing machine
- We therefore find a reduction from an arbitrary such a machine to bounded tiling
- We find a tiling system such that each row in the tiling corresponds to one configuration of the given Turing machine
$\forall a \in \Sigma$:

$\forall(q, a, p, b) \in$ $\Delta \wedge b \in \Sigma:$

$\forall(q, a, p, R) \in \Delta \wedge b \in \Sigma:$

a	
(q, a)	$R p$

	(p, b)
$R p$	

Initial tiling:

$L p$	a
	(q, a)

CS 467/567 (S. D. Bruda)

CLIQUE

- 3-SAT is NP-complete

- Hint: any clause $x_{1} \vee x_{2} \vee \cdots x_{n}$ is logically equivalent with

$$
\left(x_{1} \vee x_{2} \vee x_{2}^{\prime}\right) \wedge\left(\overline{x_{2}^{\prime}} \vee x_{3} \vee x_{3}^{\prime}\right) \wedge\left(\overline{x_{3}^{\prime}} \vee x_{4} \vee x_{4}^{\prime}\right) \wedge \cdots \wedge\left(\overline{x_{n-2}^{\prime}} \vee x_{n-1} \vee x_{n}\right)
$$

- Clique $=\{(G=(V, E), k): k \geqslant 2$: there exists a clique C of V with $|C|=k\}$
Membership in $\mathcal{N P}$ and 3 -SAT $\leqslant p$ Clique \Rightarrow Clique $\in \mathcal{N P C}$
- Start from $\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$, construct $G=(V, E)$
- Start with $V=\varnothing$ and $E=\varnothing$
- For each clause $C_{r}=l_{1}^{r} \vee l_{2}^{r} \vee l_{3}^{r}$ add vertices v_{1}^{r}, v_{2}^{r}, and v_{3}^{r} to V
- Add $\left(v_{i}^{r}, v_{j}^{s}\right)$ to E whenever $r \neq s$ and l_{i}^{r} is not the negation of $l_{j}^{s}\left(l_{i}^{r}\right.$ is and l_{j}^{s} are consistent)
- Suppose that ϕ is satisfiable; then:
- The interpretation that makes ϕ true makes at least one literal $l_{;}^{r}$ per clause true
- The vertex v_{i}^{r} is connected to all the other vertices v_{j}^{s} that make the other
clauses true (these are all consistent with each other)
- So the vertices v_{i}^{r} form a clique (of size k)
- Suppose that G has a clique C of size k; then:
- Contains exactly one vertex per clause
- Assigning \top to every literal l_{i}^{r} for which $v_{i}^{r} \in C$ is possible (all are consistent with each other)
- The assignment makes ϕ true so ϕ is satisfiable

Vertex cover

- A vertex cover of $G=(V, E)$ is a set $V^{\prime} \subseteq V$ such that $(u, v) \in E \Rightarrow u \in V^{\prime} v v \in V^{\prime}$
- Vertex-cover $=\{(G=(V, E), k): G$ has a vertex cover of size $k\}$

Membership in $\mathcal{N P}$ and Clique $\leqslant p$ Vertex-Cover \Rightarrow
VERTEX-COVER $\in \mathcal{N} \mathcal{P C}$

- Start from $(G=(V, E), k) \in$ CLIQUE
- Compute $\bar{G}=(V, \bar{E})$ where $\bar{E}=(V \times V) \backslash E$ (the complement of G)
- Then $(G, k) \in$ Clique iff $(\bar{G},|V|-k) \in \operatorname{VERTEX}$-COVER
- Suppose that G has a clique $C,|C|=k$; then:
- $(u, v) \notin E$ means that u and v cannot be both in C
- That is, $V \backslash C$ covers every edge $(u, v) \notin E$ that is, every vertex $(u, v) \in \bar{E}$
- Therefore $V C C$ is a vertex cover for \bar{G} (of size $|V|-k$)
- Suppose that \bar{G} has a vertex cover V^{\prime} with $\left|V^{\prime}\right|=|V|-k$; then:
- $(u, v) \in \bar{E} \Rightarrow u \in V^{\prime} v v \in V^{\prime}$
- Contrapositive: $u \notin V^{\prime} \wedge v \notin V^{\prime} \Rightarrow(u, v) \notin \bar{E}$
- That is, $u \in V V^{\prime} \wedge v \in V V^{\prime} \Rightarrow(u, v) \in E$
- So $V \backslash V^{\prime}$ is a clique of G (or size k)
- Hamiltonian-cycle $=\{G=(V, E): G$ is Hamiltonian $\}$

Membership in $\mathcal{N} \mathcal{P}$ and Vertex-cover $\leqslant p$ Hamiltonian-cycle \Rightarrow Hamiltonian-cycle $\in \mathcal{N} \mathcal{P} \mathcal{C}$

- Given $(G=(V, E), k)$ construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
- For each $(u, v) \in E$ we use the widget $W_{u v}$ to the right.
- A widget can only connect to the rest of the graph through $[u, v, 1],[u, v, 6],[v, u, 1]$, and $[v, u, 6]$
- Thus there are only three ways to traverse a widget as part of a Hamiltonian cycle

- We also use the selector vertices $s_{1}, s_{2}, \ldots, s_{k}$
- For each $u \in V$ and all the vertices $u^{(1)}, \ldots, u^{(d u)}$ adjacent to u in G we add $\left(\left[u, u^{(i)}, 6\right],\left[u, u^{(i+1)}, 1\right]\right)$ to $G^{\prime}, 1 \leqslant i \leqslant d u-1$
- These form a "path of widgets" that include all the widgets for the edges incident on u
- Useful to start such a part from a member of the vertex cover
- We add the vertices $\left(s_{j},\left[u, u^{(1)}, 1\right]\right)$ and $\left(s_{j},\left[u, u^{d u}, 6\right]\right)$ for all $u \in V$ and $1 \leqslant j \leqslant k$
- These complete a cycle (combined with the path of widgets) but only for the members of the vertex cover

