
CS 467/567: NP-complete problems

Stefan D. Bruda

Winter 2023

PROBLEMS EVERYWHERE

Abstract problem: relation Q over the set I of problem instances and the
set S of problem solutions: Q Ď I ˆ S

Complexity theory deals with decision problems or languages (S “ {0, 1})
Technically a language is a set of strings
A problem Q Ď I ˆ {0, 1} ca be rewritten as the language (set)
LpQq “ {w P I : pw , 1q P Q}

Many abstract problems are optimization problems instead; however, we can
usually restate an optimization problem as a decision problem which require
the same amount of resources to solve

Concrete problem: an abstract decision problem with I “ {0,1}˚
Abstract problem mapped on concrete problem using an encoding
e : I Ñ {0, 1}˚

Q Ď I ˆ {0, 1} mapped to the concrete problem epQq Ď epIq ˆ {0, 1}
Encodings will not affect the performance of an algorithm as long as they are
polynomially related

An algorithm solves a concrete problem in time OpT pnqq whenever the
algorithm produces in OpT pnqq time a solution for any problem instance i
with |i | “ n

CS 467/567 (S. D. Bruda) Winter 2023 1 / 13

LANGUAGES? PROBLEMS?

Complexity theory analyzes problems from the perspective of how many
resources (e.g., time, storage) are necessary to solve them

Given some abstract problem that requires certain resource (time) bounds to
solve, it is generally easy to find a language that requires the same resource
bounds to decide
Sometime (but not always) finding an algorithm for deciding the language
immediately implies an algorithm for solving the problem

Traveling salesman (TSP): Given n ě 2, a matrix pdijq1ďi,jďn with dij ą 0
and dii “ 0, find a permutation π of {1,2, . . . ,n} such that cpπq, the cost
of π is minimal, where cpπq “ dπ1π2 ` dπ2π3 ` ¨ ¨ ¨ ` dπn´1πn ` dπnπ1

TSP the language (take 1): {ppdij q1ďi,jďn,Bq : n ě 2,B ě 0, there exists a
permutation π such that cpπq ď B}
TSP the language (take 2), or the Hamiltonian graphs: Exactly all the graphs
that have a (Hamiltonian) cycle that goes through all the vertices exactly
once
Note in passing: A cycle that uses all the edges exactly once is Eulerian; a
graph G is Eulerian iff

1 There is a path between any two vertices that are not isolated, and
2 Every vertex has an in-degree equal to its out-degree

CS 467/567 (S. D. Bruda) Winter 2023 2 / 13

LANGUAGES? PROBLEMS? (CONT’D)

Clique: Given an undirected graph G “ pV ,Eq, find the maximal set
C Ď V such that @ vi , vj P C : pvi , vjq P E (C is a clique of G)

Clique, the language: {pG “ pV ,Eq,K q : K ě 2 : there exists a clique C of V
such that |C| ě K}

SAT: Fix a set of variables X “ {x1, x2, . . . , xn} and let
X “ {x1, x2, . . . , xn}

An element of X Y X is called a literal
A formula (or set/conjunction of clauses) is α1 ^ α2 ^ ¨ ¨ ¨ ^ αm where
αi “ xa1 _ xa2 _ ¨ ¨ ¨ _ xak , 1 ď i ď m, and xai P X Y X
An interpretation (or truth assignment) is a function I : X Ñ {J,K}
A formula F is satisfiable iff there exists an interpretation under which F
evaluates to J.
SAT “ {F : F is satisfiable }

2-SAT, 3-SAT are variants of SAT (with the number of literals in every
clause restricted to a maximum of 2 and 3, respectively)
Note in passing: Sometimes SAT (2-SAT, 3-SAT) is called CNF (2-CNF,
3-CNF) because the input formulae are written in conjunctive normal form

CS 467/567 (S. D. Bruda) Winter 2023 3 / 13

THE COMPLEXITY CLASS P

Complexity class P: the class of all the concrete problems that are
solvable in polynomial time

Meaning that for any problem in P there exists an algorithm that solves it in
Opnk q time for some constant k ě 0

For some f : N Ñ N, a Turing machine M “ pK ,Σ,∆, s, {h}q is f -time
bounded iff for any w P Σ˚: there is no configuration C such that
ps,#w#q $f p|w |q`1

M C
M is polynomially (time) bounded iff M is p-time bounded for some
polynomial p “ Opnk q
Problem p is polynomially solvable iff there exists a deterministic
polynomially bounded Turing machine that solves p ñ complexity class P

P (as well as all the other complexity classes) are defined based on
worst-case analysis

CS 467/567 (S. D. Bruda) Winter 2023 4 / 13

THE COMPLEXITY CLASS NP

Complexity class NP: the class of exactly all the problems solvable by
nondeterministic, polynomially bounded Turing machines
Verification algorithm: An algorithm A with two inputs: an ordinary
problem instance x and a certificate y

A verifies the input x if there exists a certificate y such that Apx , yq “ 1
The language verified by A is L “ {x P {0, 1}˚ : D y P {0, 1}˚ : Apx , yq “ 1}
A verifies L if for any string x P L, there exists a certificate y that A can use
to prove that x P L; for any string x R L there must be no certificate proving
that x P L

Complexity class NP: the class of all the problems verifiable in
deterministic polynomial time

L P NP iff there exists a polynomial verification algorithm A and a constant c
such that L “ {x P {0, 1}˚ : D y P {0, 1}˚ : |y | “ Op|x |cq ^ Apx , yq “ 1}

Complexity class EXP: exactly all the problems solvable by
exponentially-bounded, deterministic algorithms

P Ď NP Ď EXP

CS 467/567 (S. D. Bruda) Winter 2023 5 / 13

POLYNOMIAL REDUCTIONS & NP-COMPLETENESS

A problem Q can be reduced to another problem Q1 if any instance of Q
can be “easily rephrased” as an instance of Q1

If Q reduces to Q1 then Q is “not harder to solve” than Q1

Polynomial reduction: A language L1 is polynomial-time reducible to a
language L2 (L1 ďP L2) iff there exists a polynomial algorithm F that
computes the function f : {0,1}˚ Ñ {0,1}˚ such that

@ x P {0,1}˚ : x P L1 iff f pxq P L2

Polynomial reductions show that a problem is not harder to solve than
another within a polynomial-time factor

Lemma
L1 ďP L2 ^ L2 P P ñ L1 P P

A problem L is NP-hard iff @ L1 P NP : L1 ďP L
A problem L is NP-complete (L P NPC) iff L is NP-hard and L P NP

Theorem
Let L be some NP-complete problem; then P “ NP iff L P P

CS 467/567 (S. D. Bruda) Winter 2023 6 / 13

NP-COMPLETENESS THEORY IN A NUTSHELL

Are there NP-complete problems at all?
SAT P NPC (Stephen Cook, 1971)

The first is the hard one: need to show that every problem in NP reduces
to our problem
Then in order to find other NP-complete problems all we need to do is to
find problems such that some problem already known to be NP-complete
reduces to them

This works because polynomial reductions are closed under composition =
are transitive

Then it is apparently easy to use the theorem stated earlier:
Let L be some NP-complete problem; then P “ NP iff L P P

CS 467/567 (S. D. Bruda) Winter 2023 7 / 13

BOUNDED TILING

Tiling system: D “ pD,d0,H,V , sq
D is a finite set of tiles
d0 P D is the initial corner tile
H,V P D ˆ D are the horizontal and vertical tiling restrictions
s ą 0 is a constant

Tiling: f : Ns ˆNs Ñ D such that
f p0, 0q “ d0

@ 0 ď m ă s, 0 ď n ă s ´ 1 : pf pm, nq, f pm, n ` 1qq P V
@ 0 ď m ă s ´ 1, 0 ď n ă s : pf pm, nq, f pm ` 1, nqq P H

The bounded tiling problem:
Given a tiling system D, a positive integer s and an initial tiling f0 : Ns Ñ D
Find whether there exists a tiling function f that extends f0

Bounded tiling is in NP (why?)

CS 467/567 (S. D. Bruda) Winter 2023 8 / 13

BOUNDED TILING IS NP-COMPLETE

Need to find reductions from all problems in NP to bounded tiling
The only thing in common to all the NP problems is that each of them is
decided by a nondeterministic, polynomially bounded Turing machine
We therefore find a reduction from an arbitrary such a machine to bounded
tiling

We find a tiling system such that each row in the tiling corresponds to one
configuration of the given Turing machine

@ a P Σ :

a

a

a

ph, aq

@ pq,a,p,bq P
∆^ b P Σ :

pp, bq

pq, aq

@ pq,a,p,Rq P ∆ ^ b P Σ :

a
Rp

pq, aq

pp, bq
Rp

b

@ pq,a,p,Lq P ∆ ^ b P Σ :

pp, bq
Lp

b

a
Lp

pq, aq

Initial tiling:

w1 w2 . . . wn ps,#q

CS 467/567 (S. D. Bruda) Winter 2023 9 / 13

SAT IS NP-COMPLETE

1 SAT P NP
Nondeterministically guess an interpretation then check that the
interpretation satisfies the formula
Both of these take linear time

2 SAT is NP-hard
Reduction of bounded tiling to SAT
Variables: xnmd standing for “tile d is at position pn,mq in the tiling”
Construct clauses such that xnmd “ J iff f pm, nq “ d
First specify that we have a function:

Each position has at least one tile: @ 0 ď m, n ď s : xmnd1 _ xmnd2 _ ¨ ¨ ¨
No more than one tile in a given position: @ 0 ď m, n ď s, d ‰ d 1 : xmnd _ xmnd1

Then specify the restrictions H and V :
pd , d 1q P D2zH ñ xmnd _ xm`1nd1 pd , d 1q P D2zV ñ xmnd _ xmn`1d1

3-SAT is also NP-complete

CS 467/567 (S. D. Bruda) Winter 2023 10 / 13

CLIQUE

3-SAT is NP-complete
Hint: any clause x1 _ x2 _ ¨ ¨ ¨ xn is logically equivalent with
px1 _ x2 _ x 1

2q ^ px 1
2 _ x3 _ x 1

3q ^ px 1
3 _ x4 _ x 1

4q ^ ¨ ¨ ¨ ^ px 1
n´2 _ xn´1 _ xnq

CLIQUE “ {pG “ pV ,Eq, kq : k ě 2 : there exists a clique C of V with
|C| “ k}
Membership in NP and 3-SAT ďP CLIQUE ñ CLIQUE P NPC

Start from ϕ “ C1 ^ C2 ^ ¨ ¨ ¨ ^ Ck , construct G “ pV ,Eq
Start with V “ H and E “ H
For each clause Cr “ l r

1 _ l r
2 _ l r

3 add vertices v r
1 , v r

2 , and v r
3 to V

Add pv r
i , v

s
j q to E whenever r ‰ s and l r

i is not the negation of ls
j (l r

i is and ls
j

are consistent)
Suppose that ϕ is satisfiable; then:

The interpretation that makes ϕ true makes at least one literal l ri per clause true
The vertex v r

i is connected to all the other vertices vs
j that make the other

clauses true (these are all consistent with each other)
So the vertices v r

i form a clique (of size k)
Suppose that G has a clique C of size k ; then:

C contains exactly one vertex per clause
Assigning J to every literal l ri for which v r

i P C is possible (all are consistent with
each other)
The assignment makes ϕ true so ϕ is satisfiable

CS 467/567 (S. D. Bruda) Winter 2023 11 / 13

VERTEX COVER

A vertex cover of G “ pV ,Eq is a set V 1 Ď V such that
pu, vq P E ñ u P V 1 _ v P V 1

VERTEX-COVER “ {pG “ pV ,Eq, kq : G has a vertex cover of size k}
Membership in NP and CLIQUE ďP VERTEX-COVER ñ
VERTEX-COVER P NPC

Start from pG “ pV ,Eq, kq P CLIQUE
Compute G “ pV ,Eq where E “ pV ˆ V qzE (the complement of G)
Then pG, kq P CLIQUE iff pG, |V | ´ kq P VERTEX-COVER
Suppose that G has a clique C, |C| “ k ; then:

pu, vq R E means that u and v cannot be both in C
That is, V zC covers every edge pu, vq R E that is, every vertex pu, vq P E
Therefore V zC is a vertex cover for G (of size |V | ´ k)

Suppose that G has a vertex cover V 1 with |V 1| “ |V | ´ k ; then:
pu, vq P E ñ u P V 1 _ v P V 1
Contrapositive: u R V 1 ^ v R V 1 ñ pu, vq R E
That is, u P V zV 1 ^ v P V zV 1 ñ pu, vq P E
So V zV 1 is a clique of G (or size k)

CS 467/567 (S. D. Bruda) Winter 2023 12 / 13

HAMILTONIAN CYCLE

HAMILTONIAN-CYCLE “ {G “ pV ,Eq : G is Hamiltonian}
Membership in NP and VERTEX-COVER ďP HAMILTONIAN-CYCLE ñ
HAMILTONIAN-CYCLE P NPC

Given pG “ pV ,Eq, kq construct G1 “ pV 1,E 1q
For each pu, vq P E we use the widget Wuv to the
right.

A widget can only connect to the rest of the graph
through ru, v , 1s, ru, v , 6s, rv , u, 1s, and rv , u, 6s
Thus there are only three ways to traverse a widget
as part of a Hamiltonian cycle

[, , 1][, , 1]

[, , 2][, , 2]

[, , 3][, , 3]

[, , 4][, , 5]

[, , 4][, , 5]

[, , 6][, , 6]

We also use the selector vertices s1, s2,. . . , sk

For each u P V and all the vertices up1q, . . . , upduq adjacent to u in G we add
pru, upiq, 6s, ru, upi`1q, 1sq to G1, 1 ď i ď du ´ 1

These form a “path of widgets” that include all the widgets for the edges incident
on u
Useful to start such a part from a member of the vertex cover

We add the vertices psj , ru, up1q, 1sq and psj , ru, udu, 6sq for all u P V and
1 ď j ď k

These complete a cycle (combined with the path of widgets) but only for the
members of the vertex cover

CS 467/567 (S. D. Bruda) Winter 2023 13 / 13

