POINTS AND SEGMENTS

@ Points identified by their (x, y) coordinates

o Some times useful to think about points as vectors p = (x, y)

. @ Convex combination of two points py = (X1, 1) and p2 = (X2, ¥2): point
CS 467/567: Elements of Computational Geometry ps = (x3, y3) such that ps = ap;y + (1 — c()z)pg chr some 0 <(a < 1)
(meaning x3 = axy + (1 —a)xe and y3 = ay; + (1 — a)ye)

@ The set of all convex combinations of p; and p. is the segment p1p2

e Some times the ordering of the end points matters = directed segment p1p2
@ Interesting basic algorithmic questions about segments:

@ Given popi and popz, is pop; clockwise from pop2 (with respect to the
common point)?
Winter 2023 @ Given two segments pypz and p2ps, if we traverse pipz and then pzps do we
make a left turn at po?
© Do segments p1p2 and psp, intersect?

Stefan D. Bruda

o Desired: O(1) complexity
o To be avoided: division (approximate) and trigonometric functions
(expensive and also approximate)

CS CS 467/567 (S. D. Bruda) Winter 2023 1/12

CROSS PRODUCT AND APPLICATIONS SEGMENT INTERSECTION
Two segments intersect iff either of the following conditions hold:
@ The cross product p; x pz is the area of the parallelogram formed by @ Each segment straddles the line containing the other
(0,0), p1, P2, and p1 + pz: e pipz straddles a line if ps is on one side of the line and p. on the other side
@ An end point of one segment lies on the other segment (boundary case)
_ X1 X2\ _ _
p1 x pe = det (Vi e) = XYem Xe)i = =P X P Algorithm SEGMENTS-INTERSECT (1 Dz, P3Pa):

@ d; < DIRECTION(ps, ps, p1)

@ py x po > 0 iff py is clockwise from py o« DIRECTION(Ds, s, p2)
2 — s M4y

@ Whether pop; clockwise from pops can be solved by translating the

segments so that py is placed at (0, 0) and then computing the cross Q ds — DIRECTION(p1, 2, P3)
product © d; — DIRECTION(p1, P2, Ps)
Q@if (d1>0Ada<0vdi<0Ad>0)A
(P1 — Po) x (P2 — Po) = (X1 — X0) (Y2 — Yo) — (X2 — Xo)(¥1 — Yo) (05 >0Ady<0vd3<0ndy>0) thenreturn TRUE
Then (ps — po) x (P2 — po) > 0 iff Pop; is clockwise from Bop2 Q elseif (di == 0 A ON-SEGMENT(p3, ps, p1))V

@ When traversing ppz and p2ps we turn left at ps iff pyps is

(
(do == 0 A ON-SEGMENT(p3, P4,
counterclockwise from pyp3 that is, (o3 — p1) x (P2 — p1) <0 (

(
(p2))v
d3 == 0 A ON-SEGMENT(p1, P2, P3)) Vv
(dy == 0 A ON-SEGMENT(p1, P2, P4))
@ else return FALSE

CS CS 467/567 (S. D. Bruda) Winter 2023 2/12 CS CS 467/567 (S. D. Bruda) Winter 2023 3/12

then return TRUE

SEGMENT INTERSECTION (CONT’D) =N MANY-SEGMENT INTERSECTION

@ Problem: Given a set of segments, determine whether any two segments
from the set intersect
o Simplifying assumptions: no vertical segment, and no single-point
Algorithm DIRECTION (p;, pj, Pk): intersection of three segments (or more)
@ return (px — p)) x (pj — p1) ° fgl;/gg?etf)t)/t(s)v:%er]?lng —imaginary vertical sweep line passing through the

@ The sweep line at coordinate x defined a preorder >, over segments:
Sy >4 Sp iff the intersection of sy with the sweep line at x is higher than
the intersection of s, with the same sweep line

Algorithm ON-SEGMENT (p;, pj, Pk): o Total order for all the segments that intersect the line at x

@ return min(x, x;) < Xk < max(X;, X;) A @ Sweep algorithr_n baged on the sweep line status — the relationship
min(yi, i) < i < max(¥i, ¥)) between the objects intersected by the sweep line
e e e Can be stored using a binary search tree such as a red-black tree = O(log n)
access time

@ INSERT(T, s) = inserts segment sinto T

o DELETE(T, s) = deletes sfrom T

o ABOVE(T, s) = returns the segment immediately above sin T

o BELOW(T, s) = returns the segment immediately below sin T

CS CS 467/567 (S. D. Bruda) Winter 2023 4/12 CS CS 467/567 (S. D. Bruda) Winter 2023 5/12

MANY-SEGMENT INTERSECTION (CONT’D) J CONVEX HULL: GRAHAM SCAN
Algorithm ANY-SEGMENT-INTERSECT(S: set of segments): The convex hull CH(Q) os a set of points Q is the smallest convex polygon P
QT o for which each point in Q is either on the boundary of P or inside P

@ Sort the endpoints of the segments in S from left to right; break ties by Algorithm GRAHAM-SCAN(Q):

putting left endpoints before right endpoints and further putting points Q let py be the p oinf in. Q with the ".””’mum coordinate, or the
with lower y coordinates first leftmost such point in case of a tie

Q let (p1,p2, ..., Pm) be the remaining points in Q sorted by polar
angle in counterclockwise order around py

@ remove all but the farthest from py points that have the same angle

@ for each point p in the sorted list do
@ if pis the left endpoint of a segment s then
@ INSERT(T,s)

@ if ABOVE(T, s) exists and intersects s or BELOW(T, s) exists and intersects s Q /et S be an empty stack
then return TRUE @ PUSH(po, S); PUSH(p1, S); PUSH(p2, S)
@ if pis the right endpoint of a segment s then © fori— 3 tomdo
@ if both ABOVE(T, s) and BELOW(T, s) exist and intersect each other @ while the angle formed by NEXT-TO-TOP(S), TOP(S), and p;
then return TRUE makes a non-left turn do PopP(S)

@ DELETE(T,s) @ PusH(p;, S)
© return FALSE Q return S

@ Complexity: O(nlog n) @ Complexity: O(nlog n)

CS CS 467/567 (S. D. Bruda) Winter 2023 6/12 CS CS 467/567 (S. D. Bruda) Winter 2023 avs

CONVEX HULL: GIFT WRAPPING CONVEX HULL: DIVIDE AND CONQUER

@ Gift wrapping or Jarvis’ march has the complexity O(nh) where his the

number of points in the convex hull Algorithm DNC-CONVEX-HULL(Q: set of points):
o Asymptotically faster than the Graham scan whenever the convex hull is @ if |Q| < 3 then compute the hull directly (triangle or line) and return it
small (o(log n)) Q else

@ partition Q into equal sets @, with the lowest x coordinates and Qj with the
highest x coordinates.

@ H, — DNC-CONVEX-HULL(Qy); Hn < DNC-CONVEX-HULL(Q)

@ compute ab and cd, the lower and upper for H; and Hp:

@ let a be the rightmost point of H; and b the leftmost point of Hj,
@ while abis not a lower tangent for H; and Hj, do

Algorithm JARVIS-MARCH(Q) returns H:
@ let py be the point in Q with the minimum coordinate, or the leftmost such
point in case of a tie
QH-g
@ Construct the right chain:

Q /.« 0;addp;to H while ab is not a lower tangent for H; do move a clockwise on H;

@ until p; is the highest vertex do) while ab is not a lower tangent for H, do move b counterclockwise on Hj
let pi1 be the vertex with the smallest polar angle with respect to p; © compute the upper tangent similarly
j—i+1

O discard all the points between ab and cd and return the remaining points as

© Construct the left chain: the convex hull

@ until p; = py do
let pi1 be the vertex with the smallest polar angle with respect to p; from the @ Complexity: O(n log n) (why?)
negative x axis
add pj qto H;i—i+1

CS CS 467/567 (S. D. Bruda) Winter 2023 8/12 CS CS 467/567 (S. D. Bruda) Winter 2023 9/12

CONVEX HULL: QUICKHULL N ¥ CONVEX HULL: MEETING LOWER BOUNDS
@ The Quickhull algorithm: @ Obvious lower bound for convex hull: Q(n)
Algorithm QUICKHULL(Q: set of points): @ In practice some sorting is required (either implicit or explicit) so the lower
@ find the points a and b with minimum and maximum x coordinates (part of bound becomes 2(nlog n)
the convex hull) . @ However, if it is possible to discard the points that do not belong to the
@ return {a} U QUICKHUL-REC(ab) U {b} U QUICKHUL-REC(ba) hull before doing the sorting then the complexity becomes Q(nlog h)
. 2 (where his the number of points in the convex hull — output sensitive
Algorithm QUICKHUL-REC(ab): complexity/algorithm)
@ determine /, the point with the maximum distance from ab and to the left of @ Meeting (even exceeding!) the lower bound in practice (i.e., most of the
a time): Quickhull + the Akl-Toussaint heuristic:

Q return QuickHuL-REC(al) v {/} v QUICKHUL-REC(1D) e Find my, My, my, and M,, the extreme points on both axes

o Compute the convex hull as

@ Worst-case complexity O(n?), average-case complexity O(nlog n) (just {myx} U QUICKHUL-REC(Mymy) U {m,} U QUICKHUL-REC(myMy) u {Mx} U
like Quicksort) QUICKHUL-REC(M M) U {M,} U QUICKHUL-REC(M, my)

@ Unlike Quicksort there is no obvious randomized version with O(nlog n) o All the points in the quadrilateral mym, MM, are effectively discarded from

. . the outset
expected running time . N o . .
P 9 . _ e Linear expected running time for random point distribution with certain
@ Still, performs very well in practice probability density functions common in practice

CS CS 467/567 (S. D. Bruda) Winter 2023 10/12 CS CS 467/567 (S. D. Bruda) Winter 2023 11/12

CONVEX HULL: MEETING THE LOWER BOUND

(CONT’D)

@ Properly meeting the lower bound (worst case analysis): Graham scan +
gift wrapping = Chan’s algorithm (1996)
@ Idea (Chan’s partial convex hull algorithm):

o For some given m, split the points from Q in m groups of equal size (O(n))
o Compute the convex hull of each group using Graham’s scan (O(mlog m))
@ Run gift wrapping on the groups

@ O(log m) time to compute the tangent between a point and a convex hull

@ Still h gift wrapping steps, but only on n/m “points”

@ Overall complexity: O(n + hn/mlog m) which is O(nlog h) whenever m = h

@ Chan’s complete convex hull algorithm:

o Try increasingly larger values for m until we stumble upon m > h

e Cannot do it iteratively (h multiplier) or using binary search (log n multiplier)

o We are however OK with m reaching a polynomial in h rather than h itself: m
will reach h° and the overall complexity is still O(nlog h)

@ So we start with m = 2 and repeatedly square the previous value of m until
we obtainm > h

CS CS 467/567 (S. D. Bruda) Winter 2023 12/12

