
CS 467/567: Elements of Computational Geometry

Stefan D. Bruda

Winter 2023

POINTS AND SEGMENTS

Points identified by their px , yq coordinates
Some times useful to think about points as vectors p “ px , yq

Convex combination of two points p1 “ px1, y1q and p2 “ px2, y2q: point
p3 “ px3, y3q such that p3 “ αp1 ` p1 ´ αqp2 for some 0 ď α ď 1
(meaning x3 “ αx1 ` p1 ´ αqx2 and y3 “ αy1 ` p1 ´ αqy2)

The set of all convex combinations of p1 and p2 is the segment p1p2

Some times the ordering of the end points matters = directed segment ÝÝÑp1p2

Interesting basic algorithmic questions about segments:
1 Given ÝÝÑp0p1 and ÝÝÑp0p2, is ÝÝÑp0p1 clockwise from ÝÝÑp0p2 (with respect to the

common point)?
2 Given two segments p1p2 and p2p3, if we traverse p1p2 and then p2p3 do we

make a left turn at p2?
3 Do segments p1p2 and p3p4 intersect?

Desired: Op1q complexity
To be avoided: division (approximate) and trigonometric functions
(expensive and also approximate)

CS CS 467/567 (S. D. Bruda) Winter 2023 1 / 12

CROSS PRODUCT AND APPLICATIONS

The cross product p1 ˆ p2 is the area of the parallelogram formed by
p0,0q, p1, p2, and p1 ` p2:

p1 ˆ p2 “ det
(

x1 x2
y1 y2

)
“ x1y2 ´ x2y1 “ ´p2 ˆ p1

p1 ˆ p2 ą 0 iff p1 is clockwise from p2

Whether ÝÝÑp0p1 clockwise from ÝÝÑp0p2 can be solved by translating the
segments so that p0 is placed at p0,0q and then computing the cross
product

pp1 ´ p0q ˆ pp2 ´ p0q “ px1 ´ x0qpy2 ´ y0q ´ px2 ´ x0qpy1 ´ y0q
Then pp1 ´ p0q ˆ pp2 ´ p0q ą 0 iff ÝÝÑp0p1 is clockwise from ÝÝÑp0p2

When traversing p1p2 and p2p3 we turn left at p2 iff ÝÝÑp1p3 is
counterclockwise from ÝÝÑp1p2 that is, pp3 ´ p1q ˆ pp2 ´ p1q ď 0

CS CS 467/567 (S. D. Bruda) Winter 2023 2 / 12

SEGMENT INTERSECTION

Two segments intersect iff either of the following conditions hold:
1 Each segment straddles the line containing the other

p1p2 straddles a line if p1 is on one side of the line and p2 on the other side
2 An end point of one segment lies on the other segment (boundary case)

Algorithm SEGMENTS-INTERSECT pp1p2,p3p4q:
1 d1 Ð DIRECTIONpp3,p4,p1q
2 d2 Ð DIRECTIONpp3,p4,p2q
3 d3 Ð DIRECTIONpp1,p2,p3q
4 d4 Ð DIRECTIONpp1,p2,p4q
5 if pd1 ą 0 ^ d2 ă 0 _ d1 ă 0 ^ d2 ą 0q^

pd3 ą 0 ^ d4 ă 0 _ d3 ă 0 ^ d4 ą 0q then return TRUE

6 else if pd1 ““ 0 ^ ON-SEGMENTpp3,p4,p1qq_
pd2 ““ 0 ^ ON-SEGMENTpp3,p4,p2qq_
pd3 ““ 0 ^ ON-SEGMENTpp1,p2,p3qq_
pd4 ““ 0 ^ ON-SEGMENTpp1,p2,p4qq then return TRUE

7 else return FALSE

CS CS 467/567 (S. D. Bruda) Winter 2023 3 / 12

SEGMENT INTERSECTION (CONT’D)

Algorithm DIRECTION ppi ,pj ,pk q:
1 return ppk ´ piq ˆ ppj ´ piq

Algorithm ON-SEGMENT ppi ,pj ,pk q:
1 return minpxi , xjq ď xk ď maxpxi , xjq^

minpyi , yjq ď yk ď maxpyi , yjq

CS CS 467/567 (S. D. Bruda) Winter 2023 4 / 12

MANY-SEGMENT INTERSECTION

Problem: Given a set of segments, determine whether any two segments
from the set intersect

Simplifying assumptions: no vertical segment, and no single-point
intersection of three segments (or more)

Solvable by sweeping – imaginary vertical sweep line passing through the
objects left to right
The sweep line at coordinate x defined a preorder ěx over segments:
s1 ěx s2 iff the intersection of s1 with the sweep line at x is higher than
the intersection of s2 with the same sweep line

Total order for all the segments that intersect the line at x

Sweep algorithm based on the sweep line status – the relationship
between the objects intersected by the sweep line

Can be stored using a binary search tree such as a red-black tree = Oplog nq
access time
INSERT(T , s) = inserts segment s into T
DELETE(T , s) = deletes s from T
ABOVE(T , s) = returns the segment immediately above s in T
BELOW(T , s) = returns the segment immediately below s in T

CS CS 467/567 (S. D. Bruda) Winter 2023 5 / 12

MANY-SEGMENT INTERSECTION (CONT’D)

Algorithm ANY-SEGMENT-INTERSECT(S: set of segments):
1 T Ð H
2 Sort the endpoints of the segments in S from left to right; break ties by

putting left endpoints before right endpoints and further putting points
with lower y coordinates first

3 for each point p in the sorted list do
1 if p is the left endpoint of a segment s then

1 INSERTpT , sq
2 if ABOVEpT , sq exists and intersects s or BELOWpT , sq exists and intersects s

then return TRUE

2 if p is the right endpoint of a segment s then
1 if both ABOVEpT , sq and BELOWpT , sq exist and intersect each other

then return TRUE
2 DELETEpT , sq

4 return FALSE

Complexity: Opn log nq

CS CS 467/567 (S. D. Bruda) Winter 2023 6 / 12

CONVEX HULL: GRAHAM SCAN

The convex hull CHpQq os a set of points Q is the smallest convex polygon P
for which each point in Q is either on the boundary of P or inside P

Algorithm GRAHAM-SCANpQq:
1 let p0 be the point in Q with the minimum coordinate, or the

leftmost such point in case of a tie
2 let ⟨p1,p2, . . . ,pm⟩ be the remaining points in Q sorted by polar

angle in counterclockwise order around p0
1 remove all but the farthest from p0 points that have the same angle

3 let S be an empty stack
4 PUSHpp0,Sq; PUSHpp1,Sq; PUSHpp2,Sq
5 for i Ð 3 to m do

1 while the angle formed by NEXT-TO-TOPpSq, TOPpSq, and pi

makes a non-left turn do POPpSq
2 PUSHppi ,Sq

6 return S

Complexity: Opn log nq

CS CS 467/567 (S. D. Bruda) Winter 2023 7 / 12

CONVEX HULL: GIFT WRAPPING

Gift wrapping or Jarvis’ march has the complexity Opnhq where h is the
number of points in the convex hull

Asymptotically faster than the Graham scan whenever the convex hull is
small (oplog nq)

Algorithm JARVIS-MARCHpQq returns H:
1 let p0 be the point in Q with the minimum coordinate, or the leftmost such

point in case of a tie
2 H Ñ H
3 Construct the right chain:

1 i Ð 0; add pi to H
2 until pi is the highest vertex do

let pi`1 be the vertex with the smallest polar angle with respect to pi
i Ð i ` 1

4 Construct the left chain:
1 until pi “ p0 do

let pi`1 be the vertex with the smallest polar angle with respect to pi from the
negative x axis
add pi`1 to H; i Ð i ` 1

CS CS 467/567 (S. D. Bruda) Winter 2023 8 / 12

CONVEX HULL: DIVIDE AND CONQUER

Algorithm DNC-CONVEX-HULL(Q: set of points):
1 if |Q| ă 3 then compute the hull directly (triangle or line) and return it
2 else

1 partition Q into equal sets Ql with the lowest x coordinates and Qh with the
highest x coordinates.

2 Hl Ð DNC-CONVEX-HULLpQl q; Hh Ð DNC-CONVEX-HULLpQhq
3 compute ab and cd , the lower and upper for Hl and Hh:

1 let a be the rightmost point of Hl and b the leftmost point of Hh
2 while ab is not a lower tangent for Hl and Hh do

while ab is not a lower tangent for Hl do move a clockwise on Hl
while ab is not a lower tangent for Hh do move b counterclockwise on Hh

3 compute the upper tangent similarly
4 discard all the points between ab and cd and return the remaining points as

the convex hull

Complexity: Opn log nq (why?)

CS CS 467/567 (S. D. Bruda) Winter 2023 9 / 12

CONVEX HULL: QUICKHULL

The Quickhull algorithm:

Algorithm QUICKHULL(Q: set of points):
1 find the points a and b with minimum and maximum x coordinates (part of

the convex hull)
2 return {a} Y QUICKHUL-RECpÝÑabq Y {b} Y QUICKHUL-RECpÝÑbaq

Algorithm QUICKHUL-RECpÝÑ
abq:

1 determine l , the point with the maximum distance from ÝÑab and to the left ofÝÑab
2 return QUICKHUL-RECpÝÑal q Y {l} Y QUICKHUL-RECpÝÑlb q

Worst-case complexity Opn2q, average-case complexity Opn log nq (just
like Quicksort)
Unlike Quicksort there is no obvious randomized version with Opn log nq
expected running time
Still, performs very well in practice

CS CS 467/567 (S. D. Bruda) Winter 2023 10 / 12

CONVEX HULL: MEETING LOWER BOUNDS

Obvious lower bound for convex hull: Ωpnq
In practice some sorting is required (either implicit or explicit) so the lower
bound becomes Ωpn log nq
However, if it is possible to discard the points that do not belong to the
hull before doing the sorting then the complexity becomes Ωpn log hq
(where h is the number of points in the convex hull – output sensitive
complexity/algorithm)
Meeting (even exceeding!) the lower bound in practice (i.e., most of the
time): Quickhull + the Akl-Toussaint heuristic:

Find mx , Mx , my , and My , the extreme points on both axes
Compute the convex hull as
{mx} Y QUICKHUL-RECpÝÝÝÑmx my q Y {my} Y QUICKHUL-RECpÝÝÝÑmy Mx q Y {Mx} Y
QUICKHUL-RECpÝÝÝÑMx My q Y {My} Y QUICKHUL-RECpÝÝÝÑMy mx q
All the points in the quadrilateral mx my Mx My are effectively discarded from
the outset
Linear expected running time for random point distribution with certain
probability density functions common in practice

CS CS 467/567 (S. D. Bruda) Winter 2023 11 / 12

CONVEX HULL: MEETING THE LOWER BOUND

(CONT’D)

Properly meeting the lower bound (worst case analysis): Graham scan +
gift wrapping = Chan’s algorithm (1996)
Idea (Chan’s partial convex hull algorithm):

For some given m, split the points from Q in m groups of equal size (Opnq)
Compute the convex hull of each group using Graham’s scan (Opm logmq)
Run gift wrapping on the groups

Oplogmq time to compute the tangent between a point and a convex hull
Still h gift wrapping steps, but only on n{m “points”
Overall complexity: Opn ` hn{m logmq which is Opn log hq whenever m “ h

Chan’s complete convex hull algorithm:
Try increasingly larger values for m until we stumble upon m ě h
Cannot do it iteratively (h multiplier) or using binary search (log n multiplier)
We are however OK with m reaching a polynomial in h rather than h itself: m
will reach hc and the overall complexity is still Opn log hq
So we start with m “ 2 and repeatedly square the previous value of m until
we obtain m ě h

CS CS 467/567 (S. D. Bruda) Winter 2023 12 / 12

