POINTS AND SEGMENTS

CS 467/567: Elements of Computational Geometry

Winter 2023

- Points identified by their (*x*, *y*) coordinates
 - Some times useful to think about points as vectors p = (x, y)
- Convex combination of two points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$: point $p_3 = (x_3, y_3)$ such that $p_3 = \alpha p_1 + (1 \alpha)p_2$ for some $0 \le \alpha \le 1$ (meaning $x_3 = \alpha x_1 + (1 \alpha)x_2$ and $y_3 = \alpha y_1 + (1 \alpha)y_2$)
 - The set of all convex combinations of p_1 and p_2 is the segment $\overline{p_1 p_2}$
 - Some times the ordering of the end points matters = directed segment $\overrightarrow{p_1p_2}$
- Interesting basic algorithmic questions about segments:
 - Given $\overline{p_0 p_1}$ and $\overline{p_0 p_2}$, is $\overline{p_0 p_1}$ clockwise from $\overline{p_0 p_2}$ (with respect to the common point)?
 - ② Given two segments $\overline{p_1p_2}$ and $\overline{p_2p_3}$, if we traverse $\overline{p_1p_2}$ and then $\overline{p_2p_3}$ do we make a left turn at p_2 ?
 - O segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$ intersect?
 - Desired: O(1) complexity
 - To be avoided: division (approximate) and trigonometric functions (expensive and also approximate)

CS CS 467/567 (S. D. Bruda

Winter 2023 1 / 1

CROSS PRODUCT AND APPLICATIONS

• The cross product $p_1 \times p_2$ is the area of the parallelogram formed by (0,0), p_1 , p_2 , and $p_1 + p_2$:

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1$$

- $p_1 \times p_2 > 0$ iff p_1 is clockwise from p_2
- Whether $\overline{p_0p_1}$ clockwise from $\overline{p_0p_2}$ can be solved by translating the segments so that p_0 is placed at (0, 0) and then computing the cross product

$$(p_1 - p_0) \times (p_2 - p_0) = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$$

Then $(p_1 - p_0) \times (p_2 - p_0) > 0$ iff $\overrightarrow{p_0 p_1}$ is clockwise from $\overrightarrow{p_0 p_2}$

• When traversing $\overline{p_1p_2}$ and $\overline{p_2p_3}$ we turn left at p_2 iff $\overline{p_1p_3}$ is counterclockwise from $\overline{p_1p_2}$ that is, $(p_3 - p_1) \times (p_2 - p_1) \leq 0$

SEGMENT INTERSECTION

Two segments intersect iff either of the following conditions hold:

- Each segment straddles the line containing the other
 - $\overline{p_1p_2}$ straddles a line if p_1 is on one side of the line and p_2 on the other side
- An end point of one segment lies on the other segment (boundary case)

Algorithm SEGMENTS-INTERSECT $(\overline{p_1p_2}, \overline{p_3p_4})$:

- $d_1 \leftarrow \text{DIRECTION}(p_3, p_4, p_1)$
- **2** $d_2 \leftarrow \text{DIRECTION}(p_3, p_4, p_2)$
- ③ d_3 ← DIRECTION(p_1, p_2, p_3)
- ④ $d_4 \leftarrow \text{DIRECTION}(p_1, p_2, p_4)$
- else if $(d_1 == 0 \land \text{ON-SEGMENT}(p_3, p_4, p_1)) \lor$
 - $(d_2 == 0 \land \mathsf{ON-SEGMENT}(p_3, p_4, p_2)) \lor$
 - $(d_3 = = 0 \land \mathsf{ON-SEGMENT}(p_1, p_2, p_3)) \lor$
 - $(d_4 == 0 \land ON-SEGMENT(p_1, p_2, p_4))$ then return TRUE

else return False

ect iff either of the following conditions hold:

Algorithm DIRECTION (p_i, p_j, p_k) :

• return $(p_k - p_i) \times (p_j - p_i)$

Algorithm ON-SEGMENT (p_i, p_j, p_k) :

• return $\min(x_i, x_j) \le x_k \le \max(x_i, x_j) \land \min(y_i, y_j) \le y_k \le \max(y_i, y_j)$

MANY-SEGMENT INTERSECTION

- Problem: Given a set of segments, determine whether any two segments from the set intersect
 - Simplifying assumptions: no vertical segment, and no single-point intersection of three segments (or more)
- Solvable by sweeping imaginary vertical sweep line passing through the objects left to right
- The sweep line at coordinate *x* defined a preorder ≥_x over segments:
 s₁ ≥_x s₂ iff the intersection of s₁ with the sweep line at *x* is higher than the intersection of s₂ with the same sweep line
 - Total order for all the segments that intersect the line at *x*
- Sweep algorithm based on the sweep line status the relationship between the objects intersected by the sweep line
 - Can be stored using a binary search tree such as a red-black tree = $O(\log n)$ access time
 - INSERT(T, s) = inserts segment s into T
 - DELETE(T, s) = deletes s from T
 - ABOVE(T, s) = returns the segment immediately above s in T
 - BELOW(T, s) = returns the segment immediately below s in T

CS CS 467/567 (S. D. Bruda)

MANY-SEGMENT INTERSECTION (CONT'D)

Algorithm ANY-SEGMENT-INTERSECT(*S*: set of segments):

- $\textcircled{0} T \leftarrow \varnothing$
- Sort the endpoints of the segments in S from left to right; break ties by putting left endpoints before right endpoints and further putting points with lower y coordinates first

for each point p in the sorted list do

- if p is the left endpoint of a segment s then
 - INSERT(T, s)
 - **if** ABOVE(T, s) exists and intersects s or BELOW(T, s) exists and intersects s then return TRUE
- **2** if p is the right endpoint of a segment s then
 - if both ABOVE(T, s) and BELOW(T, s) exist and intersect each other then return TRUE
 Development (T, s)
 - **2** Delete(T, s)
- return False
- Complexity: $O(n \log n)$

CONVEX HULL: GRAHAM SCAN

The convex hull CH(Q) os a set of points Q is the smallest convex polygon P for which each point in Q is either on the boundary of P or inside P

Algorithm GRAHAM-SCAN(*Q*):

- Iet p₀ be the point in Q with the minimum coordinate, or the leftmost such point in case of a tie
- Iet (p₁, p₂,..., p_m) be the remaining points in Q sorted by polar angle in counterclockwise order around p₀
 - **()** remove all but the farthest from p_0 points that have the same angle
- Iet S be an empty stack
- PUSH(p₀, S); PUSH(p₁, S); PUSH(p₂, S)
- If or i ← 3 to m do
 - while the angle formed by NEXT-TO-TOP(S), TOP(S), and p_i makes a non-left turn do POP(S)
 - PUSH(*p_i*, *S*)
- In the second second
- Complexity: $O(n \log n)$

Winter 2023

CS CS 467/567 (S. D. Bruda

Winter 2023

- Gift wrapping or Jarvis' march has the complexity *O*(*nh*) where *h* is the number of points in the convex hull
 - Asymptotically faster than the Graham scan whenever the convex hull is small (*o*(log *n*))

Algorithm JARVIS-MARCH(Q) returns H:

- It p_0 be the point in Q with the minimum coordinate, or the leftmost such point in case of a tie
- $\textcircled{2} H \to \emptyset$
- Onstruct the right chain:
 - $i \leftarrow 0$; add p_i to H
 - 2 **until** *p_i* is the highest vertex **do**
 - let p_{i+1} be the vertex with the smallest polar angle with respect to p_i $i \leftarrow i + 1$
- Construct the left chain:
 - until $p_i = p_0$ do
 - let p_{i+1} be the vertex with the smallest polar angle with respect to p_i from the negative x axis add p_i to k_i is $i \in 1$.
 - add p_{i+1} to H; $i \leftarrow i+1$

Algorithm DNC-CONVEX-HULL(*Q*: set of points):

(1) if |Q| < 3 then compute the hull directly (triangle or line) and return it

else

- partition Q into equal sets Q_l with the lowest x coordinates and Q_h with the highest x coordinates.
- ② $H_l \leftarrow \text{DNC-CONVEX-HULL}(Q_l); H_h \leftarrow \text{DNC-CONVEX-HULL}(Q_h)$
- **(a)** compute \overline{ab} and \overline{cd} , the lower and upper for H_l and H_h :
 - let a be the rightmost point of H_l and b the leftmost point of H_h
 - while ab is not a lower tangent for H_l and H_h do
 while ab is not a lower tangent for H_l do move a clockwise on H_l
 while ab is not a lower tangent for H_h do move b counterclockwise on H_h
 compute the upper tangent similarly
- discard all the points between \overline{ab} and \overline{cd} and return the remaining points as the convex hull
- Complexity: $O(n \log n)$ (why?)

CS CS 467/567 (S. D. Bruda)

8 / 12 CS CS 467/567 (S. D. Bruda

CONVEX HULL: QUICKHULL

• The Quickhull algorithm:

Algorithm QUICKHULL(*Q*: set of points):

- find the points a and b with minimum and maximum x coordinates (part of the convex hull)
- **2** return $\{a\} \cup \mathsf{QUICKHUL-REC}(\overrightarrow{ab}) \cup \{b\} \cup \mathsf{QUICKHUL-REC}(\overrightarrow{ba})$

Algorithm QUICKHUL-REC(\overrightarrow{ab}):

- determine *I*, the point with the maximum distance from \overrightarrow{ab} and to the left of \overrightarrow{ab}
- **2** return QUICKHUL-REC $(\vec{al}) \cup \{l\} \cup$ QUICKHUL-REC (\vec{lb})
- Worst-case complexity O(n²), average-case complexity O(n log n) (just like Quicksort)
- Unlike Quicksort there is no obvious randomized version with $O(n \log n)$ expected running time
- Still, performs very well in practice

CONVEX HULL: MEETING LOWER BOUNDS

- Obvious lower bound for convex hull: $\Omega(n)$
- In practice some sorting is required (either implicit or explicit) so the lower bound becomes Ω(n log n)
- However, if it is possible to discard the points that do not belong to the hull before doing the sorting then the complexity becomes Ω(n log h) (where h is the number of points in the convex hull – output sensitive complexity/algorithm)
- Meeting (even exceeding!) the lower bound in practice (i.e., most of the time): Quickhull + the Akl-Toussaint heuristic:
 - Find m_x , M_x , m_y , and M_y , the extreme points on both axes
 - Compute the convex hull as $\{m_x\} \cup \text{QUICKHUL-REC}(\overrightarrow{m_x m_y}) \cup \{m_y\} \cup \text{QUICKHUL-REC}(\overrightarrow{m_y M_x}) \cup \{M_x\} \cup \text{QUICKHUL-REC}(\overrightarrow{M_x M_y}) \cup \{M_y\} \cup \text{QUICKHUL-REC}(\overrightarrow{M_y m_x})$
 - All the points in the quadrilateral $m_x m_y M_x M_y$ are effectively discarded from the outset
 - Linear expected running time for random point distribution with certain probability density functions common in practice

Winter 2023

CONVEX HULL: MEETING THE LOWER BOUND (CONT'D)

- Properly meeting the lower bound (worst case analysis): Graham scan + gift wrapping = Chan's algorithm (1996)
- Idea (Chan's partial convex hull algorithm):
 - For some given *m*, split the points from *Q* in *m* groups of equal size (O(n))
 - Compute the convex hull of each group using Graham's scan $(O(m \log m))$
 - Run gift wrapping on the groups
 - $O(\log m)$ time to compute the tangent between a point and a convex hull
 - Still *h* gift wrapping steps, but only on n/m "points"
 - Overall complexity: $O(n + hn/m \log m)$ which is $O(n \log h)$ whenever m = h
- Chan's complete convex hull algorithm:
 - Try increasingly larger values for m until we stumble upon $m \ge h$
 - Cannot do it iteratively (*h* multiplier) or using binary search (log *n* multiplier)
 - We are however OK with *m* reaching a polynomial in *h* rather than *h* itself: *m* will reach *h*^c and the overall complexity is still *O*(*n* log *h*)
 - So we start with *m* = 2 and repeatedly square the previous value of *m* until we obtain *m* ≥ *h*

Winter 2023 12 / 12