CS 467/567: Elements of Computational Geometry

Stefan D. Bruda

Points identified by their (x, y) coordinates

- Some times useful to think about points as vectors $p=(x, y)$
- Convex combination of two points $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$: point $p_{3}=\left(x_{3}, y_{3}\right)$ such that $p_{3}=\alpha p_{1}+(1-\alpha) p_{2}$ for some $0 \leqslant \alpha \leqslant 1$ (meaning $x_{3}=\alpha x_{1}+(1-\alpha) x_{2}$ and $y_{3}=\alpha y_{1}+(1-\alpha) y_{2}$)
- The set of all convex combinations of p_{1} and p_{2} is the segment $\overline{p_{1} p_{2}}$
- Some times the ordering of the end points matters = directed segment $\overrightarrow{p_{1}} \overrightarrow{p_{2}}$
- Interesting basic algorithmic questions about segments:
(1) Given $\overrightarrow{p_{0} p_{1}}$ and $\overrightarrow{p_{0} p_{2}}$, is $\overrightarrow{p_{0} p_{1}}$ clockwise from $\overrightarrow{p_{0} p_{2}}$ (with respect to the common point)?
(2) Given two segments $\overline{p_{1} p_{2}}$ and $\overline{p_{2} p_{3}}$, if we traverse $\overline{p_{1} p_{2}}$ and then $\overline{p_{2} p_{3}}$ do we make a left turn at p_{2} ?Do segments $\overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ intersect?
- Desired: $O(1)$ complexity
- To be avoided: division (approximate) and trigonometric functions (expensive and also approximate)

CROSS PRODUCT AND APPLICATIONS

- The cross product $p_{1} \times p_{2}$ is the area of the parallelogram formed by $(0,0), p_{1}, p_{2}$, and $p_{1}+p_{2}$:

$$
p_{1} \times p_{2}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} y_{2}-x_{2} y_{1}=-p_{2} \times p_{1}
$$

- $p_{1} \times p_{2}>0$ iff p_{1} is clockwise from p_{2}
- Whether $\overrightarrow{p_{0} p_{1}}$ clockwise from $\overrightarrow{p_{0} p_{2}}$ can be solved by translating the segments so that p_{0} is placed at $(0,0)$ and then computing the cross product

$$
\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)=\left(x_{1}-x_{0}\right)\left(y_{2}-y_{0}\right)-\left(x_{2}-x_{0}\right)\left(y_{1}-y_{0}\right)
$$

Then $\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)>0$ iff $\overrightarrow{p_{0} p_{1}}$ is clockwise from $\overrightarrow{p_{0} p_{2}}$

- When traversing $\overline{p_{1} p_{2}}$ and $\overline{p_{2} p_{3}}$ we turn left at p_{2} iff $\overrightarrow{p_{1} p_{3}}$ is counterclockwise from $\overrightarrow{p_{1} p_{2}}$ that is, $\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right) \leqslant 0$

SEGMENT INTERSECTION

Two segments intersect iff either of the following conditions hold:
(1) Each segment straddles the line containing the other

- $\overline{p_{1} p_{2}}$ straddles a line if p_{1} is on one side of the line and p_{2} on the other side
(2) An end point of one segment lies on the other segment (boundary case)

Algorithm SEGMENTS-INTERSECT $\left(\overline{p_{1} p_{2}}, \overline{p_{3} p_{4}}\right)$:
(1) $d_{1} \leftarrow \operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{1}\right)$
(2) $d_{2} \leftarrow \operatorname{DIRECTION}\left(p_{3}, p_{4}, p_{2}\right)$
(8) $d_{3} \leftarrow \operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{3}\right)$
(4) $d_{4} \leftarrow \operatorname{DIRECTION}\left(p_{1}, p_{2}, p_{4}\right)$
(5) if $\left(d_{1}>0 \wedge d_{2}<0 \vee d_{1}<0 \wedge d_{2}>0\right) \wedge$

$$
\left(d_{3}>0 \wedge d_{4}<0 \vee d_{3}<0 \wedge d_{4}>0\right) \quad \text { then return TRUE }
$$

(6) else if $\quad\left(d_{1}==0 \wedge \operatorname{ON}-\operatorname{SEGMENT}\left(p_{3}, p_{4}, p_{1}\right)\right) \vee$ $\left(d_{2}==0 \wedge \operatorname{ON}-\operatorname{SEGMENT}\left(p_{3}, p_{4}, p_{2}\right)\right) \vee$ $\left(d_{3}==0 \wedge \operatorname{ON-SEGMENT}\left(p_{1}, p_{2}, p_{3}\right)\right) \vee$ $\left(d_{4}==0 \wedge \operatorname{ON-SEGMENT}\left(p_{1}, p_{2}, p_{4}\right)\right) \quad$ then return TRUE
(Clse return FALSE

Algorithm DiRECTION $\left(p_{i}, p_{j}, p_{k}\right)$:
(1) return $\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)$

```
Algorithm ON-SEGMENT ( }\mp@subsup{p}{i}{},\mp@subsup{p}{j}{},\mp@subsup{p}{k}{})\mathrm{ :
    (0) return min}(\mp@subsup{x}{i}{},\mp@subsup{x}{j}{})\leqslant\mp@subsup{x}{k}{}\leqslant\operatorname{max}(\mp@subsup{x}{i}{},\mp@subsup{x}{j}{})
        min}(\mp@subsup{y}{i}{},\mp@subsup{y}{j}{})\leqslant\mp@subsup{y}{k}{}\leqslant\operatorname{max}(\mp@subsup{y}{i}{},\mp@subsup{y}{j}{}
```

- Problem: Given a set of segments, determine whether any two segments from the set intersect
- Simplifying assumptions: no vertical segment, and no single-point intersection of three segments (or more)
- Solvable by sweeping - imaginary vertical sweep line passing through the objects left to right
- The sweep line at coordinate x defined a preorder \geqslant_{x} over segments: $s_{1} \geqslant_{x} s_{2}$ iff the intersection of s_{1} with the sweep line at x is higher than the intersection of s_{2} with the same sweep line
- Total order for all the segments that intersect the line at x
- Sweep algorithm based on the sweep line status - the relationship between the objects intersected by the sweep line
- Can be stored using a binary search tree such as a red-black tree $=O(\log n)$ access time
- $\operatorname{Insert}(T, s)=$ inserts segment s into T
- $\operatorname{Delete}(T, s)=$ deletes s from T
- $\operatorname{Above}(T, s)=$ returns the segment immediately above s in T
- $\operatorname{BeLow}(T, s)=$ returns the segment immediately below s in T

Algorithm ANY-SEGMENT-INTERSECT(S: set of segments):
(1) $T \leftarrow \varnothing$
(2) Sort the endpoints of the segments in S from left to right; break ties by putting left endpoints before right endpoints and further putting points with lower y coordinates first
(3) for each point p in the sorted list do
(0) if p is the left endpoint of a segment s then
(1) Insert (T, s)
(2) if $\operatorname{Above}(T, s)$ exists and intersects s or $\operatorname{Below}(T, s)$ exists and intersects s then return True
(2) if p is the right endpoint of a segment s then
(1) if both $\operatorname{Above}(T, s)$ and $\operatorname{Below}(T, s)$ exist and intersect each other then return True
(2) $\operatorname{Delete}(T, s)$

(4) return FALSE

- Complexity: $O(n \log n)$

The convex hull $C H(Q)$ os a set of points Q is the smallest convex polygon P for which each point in Q is either on the boundary of P or inside P

Algorithm GRAHAM-SCAN (Q) :
(1) let p_{0} be the point in Q with the minimum coordinate, or the leftmost such point in case of a tie
(2) let $\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle$ be the remaining points in Q sorted by polar angle in counterclockwise order around p_{0}
(1) remove all but the farthest from p_{0} points that have the same angle
(3) let S be an empty stack
(4) $\operatorname{Push}\left(p_{0}, S\right) ; \operatorname{Push}\left(p_{1}, S\right) ; \operatorname{Push}\left(p_{2}, S\right)$
(5) for $i \leftarrow 3$ to m do
(1) while the angle formed by NEXT-TO-TOP(S), TOP(S), and p_{i} makes a non-left turn do $\operatorname{PoP}(S)$
(2) $\operatorname{Push}\left(p_{i}, S\right)$

(6) return S

- Complexity: $O(n \log n)$
- Gift wrapping or Jarvis' march has the complexity $O(n h)$ where h is the number of points in the convex hull
- Asymptotically faster than the Graham scan whenever the convex hull is small $(o(\log n))$

Algorithm JARVIS-MARCH (Q) returns H :
(1) let p_{0} be the point in Q with the minimum coordinate, or the leftmost such point in case of a tie
(2) $H \rightarrow \varnothing$
(3) Construct the right chain:
(1) $i \leftarrow 0$; add p_{i} to H
(2) until p_{i} is the highest vertex do
let p_{i+1} be the vertex with the smallest polar angle with respect to p_{i} $i \leftarrow i+1$
(4) Construct the left chain:
(1) until $p_{i}=p_{0}$ do
let p_{i+1} be the vertex with the smallest polar angle with respect to p_{i} from the negative x axis
add p_{i+1} to $H ; i \leftarrow i+1$

CONVEX HULL: QUICKHULL

Convex hull: Meeting Lower bounds

- Obvious lower bound for convex hull: $\Omega(n)$
- In practice some sorting is required (either implicit or explicit) so the lower bound becomes $\Omega(n \log n)$
- However, if it is possible to discard the points that do not belong to the hull before doing the sorting then the complexity becomes $\Omega(n \log h)$ (where h is the number of points in the convex hull - output sensitive complexity/algorithm)
- Meeting (even exceeding!) the lower bound in practice (i.e., most of the time): Quickhull + the Akl-Toussaint heuristic:
- Find m_{x}, M_{x}, m_{y}, and M_{y}, the extreme points on both axes
- Compute the convex hull as
$\left\{m_{x}\right\} \cup$ QUICKHUL-REC $\left(\overrightarrow{m_{x} m_{y}}\right) \cup\left\{m_{y}\right\} \cup$ QuICKHUL-REC $\left(\overrightarrow{m_{y} M_{x}}\right) \cup\left\{M_{x}\right\} \cup$ QUICKHUL-REC $\left(\overrightarrow{M_{x} M_{y}}\right) \cup\left\{M_{y}\right\} \cup$ QUICKHUL-REC $\left(\overrightarrow{M_{y} m_{x}}\right)$
- All the points in the quadrilateral $m_{x} m_{y} M_{x} M_{y}$ are effectively discarded from the outset
- Linear expected running time for random point distribution with certain probability density functions common in practice

Convex hull: Meeting the lower bound
 (CONT'D)

- Properly meeting the lower bound (worst case analysis): Graham scan + gift wrapping = Chan's algorithm (1996)
- Idea (Chan's partial convex hull algorithm):
- For some given m, split the points from Q in m groups of equal size $(O(n))$
- Compute the convex hull of each group using Graham's scan $(O(m \log m))$
- Run gift wrapping on the groups
- $O(\log m)$ time to compute the tangent between a point and a convex hull
- Still h gift wrapping steps, but only on n / m "points"
- Overall complexity: $O(n+h n / m \log m)$ which is $O(n \log h)$ whenever $m=h$
- Chan's complete convex hull algorithm:
- Try increasingly larger values for m until we stumble upon $m \geqslant h$
- Cannot do it iteratively (h multiplier) or using binary search (log n multiplier)
- We are however OK with m reaching a polynomial in h rather than h itself: m will reach h^{c} and the overall complexity is still $O(n \log h)$
- So we start with $m=2$ and repeatedly square the previous value of m until we obtain $m \geqslant h$

