PRAM vs. INTERCONNECTION NETWORKS

CS 467/567: Algorithms for Interconnection Networks

Stefan D. Bruda

Winter 2023

• The PRAM is a very powerful model, rarely realizable in practive

- It is however important for the theory of algorithms
- Lower bounds are particularly strong on the PRAM
- Surprising equivalences to other, realistic models
- Most massively parallel machines are laid out as networks
- From the point of view of the theory of algorithms interconnection networks typically have fixed topology
 - An interconnection network is therefore a family of graphs with RAM processors (including storage) as nodes and (direct) data links as edges
 - The number of processors (nodes) may vary, but the topology remains the same
 - Possible topology: linear array, mesh, tree, hypercube, fully connected (not realistic), etc.
- Note however that models with variable topology also exist

CS 467/567 (S. D. Bruda

Winter 2023

/ 12

INEAR ARRAYS AND ON-LINE SORTING

In a linear array with n procesors, procesor P_i is (bidirectionally)

• The simplest network topology, weakest model

connected to processor P_{i+1} for all $1 \le i < n$

- Problem: Sort in nondecreasing order a sequence $S = \langle S_1, S_2, \dots, S_n \rangle$ which is available on-line, meaning that each S_i becomes available at time i, $1 \le i \le n$
 - ullet Assume that P_1 is the "input processor" where input data becomes available
- $\Omega(n)$ lower bound for the running time no matter how many processors are available
 - Indeed, this is how much time it takes for all the data to arrive
- Useful basic operation: Compare-exchange (P_i, P_{i+1})
 - Compares the designated values held by P_i and P_{i+1} and possibly exchanges them, so that the smaller value is placed in P_i and the largest in P_{i+1}
 - O(1) computation and communication steps

SORTING BY COMPARISON-EXCHANGE

Algorithm SORT-COMPARISON-EXCHANGE:

- \bigcirc P_1 reads S_1
- of for j = 2 to n do
 - for i = 1 to j 1 do in parallel P_i sends its designated value to P_{i+1}
 - P_1 reads s_j
 - $oldsymbol{0}$ for all odd i < j do in parallel Compare-exchange (P_i, P_{i+1})
- **(a)** for j = 1 to n do in parallel
 - P₁ produces its datum as output
 - ② for i = 2 to n j + 1 do in parallel P_i sends its datum to P_{i-1}
 - **3** for all odd i < n j do in parallel Compare-exchange (P_i, P_{i+1})
- Linear (optimal) running time, but $O(n^2)$ cost

CS 467/567 (S. D. Bruda) Winter 2023 2 / 12 CS 467/567 (S. D. Bruda) Winter 2023 3 / 12

SORTING BY MERGING

SORTING BY MERGING (CONT'D)

Maintain the PRAM idea of several merges overlapping

- Now the merges are pipelined in a real pipeline
- We actually need two pipelines, so conceptually we consider that there are two links (top and bottom) between processors

Mergesort on r + 1 processors, with $r = \log n$:

- Processor P₁:
 - Reads s_1 from the input sequence; $i \leftarrow 1$
 - **2** for i = 2 to n do
 - **1 if** j is odd **then** place s_{i-1} on the top link
 - **2 else** place s_{i-1} on the bottom link
 - **3** Reads s_i from the input sequence; $i \leftarrow j + 1$
 - \bigcirc Plase s_n on the bottom link

2 while k < n do if the top input buffer contains 2^{i-2} values and the bottom input buffer contains one value then

a for m = 1 to 2^{i-1} do

• Processor P_i , $2 \le i \le r$: $0 i \leftarrow 1, k \leftarrow 1$

- (a) Let x be the largest of the first elements from the top and bottom buffers
- (b) Remove x from its buffer
- (c) if j is odd then place x on the top link
- (d) **else** place x on the bottom link
- 2 $j \leftarrow j + 1, k \leftarrow k + 2^{j-1}$
- Processor p_{r+1} :
 - \bullet if the top input buffer contains 2^{r-1} values and the bottom input buffer contains one value then
 - Let x be the largest of the first elements from the top and bottom buffers
 - Remove x from its buffer and produce it as output
- P_i needs $2^{i-2} + 1$ values so it starts at time $2^{i-2} + 1$ after P_{i-1}
- P_i produces its first output at time $1 + (2^0 + 1) + (s^1 + 1) + \cdots + (2^{i-2} + 1)$ $=2^{i-1}+i-1$ and its last output n-1 time units later
- Running time $2^r + r + (n-1) = 2n + \log n 1 = O(n)$; cost $O(n \log n)$

CS 467/567 (S. D. Bruda

SORTING (OFF-LINE)

- Biggest disadvantage of the linear array: largest possible diameter
- The two-dimensional array (or mesh) provides a considerably smaller diameter while maintaining many of the nice properties of the linear array
 - Simple theoretically, appealing in practice
 - Fixed and small maximum degree for nodes (4)
 - Regular and modular topology
- In a mesh of N processors each processor P_{ii} is connected to $P_{(i+1)i}$ and $P_{i(j+1)}, 1 \leq i, j < N^{1/2}$
 - $2N^{1/2} 2$ diameter, considerably smaller than for the linear array
 - Still the diameter is quite large
- Good compromise between vertex degree and network diameter: the hypercube
 - For some integers i and b, let $i^{(b)}$ if the binary representations of i and $i^{(b)}$ differ only in the b position
 - The processors P_1, P_2, \ldots, P_N for $N = 2^g, g \ge 1$ are arranged in a g-dimensional hypercube whenever each processor P_i is connected to exactly all the processors $P_{i(b)}$, $0 \le b < g$
 - $O(\log N)$ for both degree and diameter

- Lower bound assuming that the input data is distributed to all processors: $\Omega(N)$ time (and so $\Omega(N^2)$ cost)
 - In the worst case one datum must traverse the diameter of the network
 - Diameter: the maximum number of links on the shortest path between two processors
- Therefore a bubble sort variant is optimal

Algorithm TRANSPOSITION-SORT:

- of for j=0 to N-1 do
 - for i = 0 to N 1 do in parallel
 - **1** if $i \mod 2 = j \mod 2$ then COMPARE-EXCHANGE (P_i, P_{i+1})

CS 467/567 (S. D. Bruda)

MATRIX MULTIPLICATION ON THE HYPERCUBE

MATRIX MULTIPLICATION (CONT'D)

- Need to compute $c_{ik} = \sum_{i=0}^{n-1} a_{ii} \times b_{ik}$ for $0 \le j, k < n$
 - Straightforward sequential algorithm: $O(n^3)$ running time
 - Best known sequential algorithm: $O(n^{2+\varepsilon})$ running time, $0 < \varepsilon < 0.38$
- For input size $n = 2^g$ we use a hypercube with $N = n^3 = 2^{3g}$ processors
 - Imagine the processors conceptually arranged in an $n \times n \times n$ array such that P_r (or $P_{(i,j,k)}$) occupies position (i,j,k) with $r = in^2 + jn + k$

$$r = \underbrace{r_{3g-1}r_{3g-2}\dots r_{2g}}_{i}\underbrace{r_{2q-1}r_{2q-2}\dots r_{q}}_{j}\underbrace{r_{q-1}r_{q-2}\dots r_{0}}_{k}$$

- Each set of processors that agrees with each other on one coordinate [two coordinates] form a hypercube with n² processors [n processors]
- Processors $P_{(i,j,k)}$, $0 \le j, k < n$ form a "layer" for n layers overall
- Designated registers for $P_r/P_{(i,j,k)}$: A_r , B_r , C_r / $A_{(i,j,k)}$, $B_{(i,j,k)}$, $C_{(i,j,k)}$
- Input available in $A_{(0,j,k)}$ $(A_{(0,j,k)} = a_{jk})$ and $B_{(0,j,k)}$ $(B_{(0,j,k)} = b_{jk})$
- Output produced in $C_{(0,j,k)}$ ($C_{(0,j,k)} = c_{jk}$)
- The algorithm performs all the arithmetic calculations in constant time, but still need O(log n) time for data distribution (not optimal)

Algorithm MATRIX-MULTIPLICATION $(A = (a_{ij})_{0 \le i,j \le n}, B = (b_{ij})_{0 \le i,j \le n})$ returns $C = (c_{ij})_{0 \le i,j \le n}$:

- **Data distribution**: A and B (layer 0) are distributed to the other processors so that $P_{(i,i,k)}$ stores a_{ii} and b_{ik}
 - for m = 3g 1 down to 2g do for all $0 \le r < N \land r_m = 0$ do in parallel $A_{r(m)} \leftarrow A_r$; $B_{r(m)} \leftarrow B_r$ // result: $A_{(i,i,k)} = a_{ik}$ and $B_{(i,i,k)} = b_{ik}$, $0 \le i < n$
 - ② for m = g 1 down to 0 do for all $0 \le r < N \land r_m = r_{2g+m}$ do in parallel $A_{r(m)} \leftarrow A_r$ // $A_{(i,j,i)} \rightarrow A_{(i,j,k)}$; result: $A_{(i,j,k)} = a_{ji}$, $0 \le k < n$
 - **o** for m = 2g 1 down to g do for ann $0 \le r < N \land r_m = r_{g+m}$ do in parallel $B_{r^{(m)}} \leftarrow B_r$ // $B_{(i,i,k)} \rightarrow B_{(i,j,k)}$; result: $B_{(i,j,k)} = a_{jk}$, $0 \le i < n$
- Term computation: Each $P_{(i,j,k)}$ computes $C_{(i,j,k)} \leftarrow A_{(i,j,k)} \times B_{(i,j,k)}$ // result: $C_{(i,j,k)} = a_{ji} \times b_{ik}$
- **Summation:** For $0 \le j, k < n$ compute $C_{(0,j,k)} \leftarrow \sum_{i=0}^{n-1} C_{(i,j,k)}$

CS 467/567 (S. D. Bruda)

CS 467/567 (S. D. Bruda)

Winter 2023

9 / 12

CONNECTED COMPONENTS IN GRAPHS

- Connectivity matrix: given an adjacency matrix $A = (a_{ij})_{0 \le i,j < n}$ defining a graph $G = (\{0,1,\ldots,n\},E)$ ($a_{ij} = 1$ if $(i,j) \in E$ and 0 otherwise), the connectivity matrix $C = (c_{ij})_{0 \le i,j < n}$ is defined such that $c_{ij} = 1$ if there exists a path from i to j and 0 otherwise
- The connectivity matrix can be computed as follows: $C = A'^n$, where $A' = (a'_{ii})_{0 \le i,j < n}$ with $a'_{ii} = 1$ and $a'_{ii} = a_{ij}$ for all $i \ne j$
 - \bullet C-style booleans can use plain matrix multiplication; true booleans require multiplication with \land instead of \times and \vee instead of +
 - Repeat multiplications on the hypercube do not necessitate data redistribution, since the result of the previous multiplication is in the right place for the next multiplication
 - We can compute C using $O(\log n)$ matrix multiplications
 - Indeed, the graph C is the reflexive and transitive closure of the graph A and so $A'^p = A'^n$ for any $p \geqslant n$
 - So C can be computed on the hypercube with n³ processors and in O(log² n) time

ALL-PAIRS SHORTEST PATHS

- Given a weight matrix W defining a graph $G = (\{0, 1, ..., n\}, E)$, compute the matrix D such that d_{ij} is the cost of the shortest path between i and j
 - We assume no cycles of negative weight (no advantage to visit any vertex more than once)
 - Useful property: Any shortest path between two vertices contain shortest paths between the intermediate vertices
 - So in computing a shortest path we can compute all the combinations of shortest subpaths and then choose the shortest one
 - So the shortest paths d_{ij}^k containing at most k+1 vertices can be computed inductively:
 - $d_{ii}^1 = w_{ij}$ whenever there exists a vertex between i and j and ∞ otherwise
 - $d_{ij}^k = \min_{0 \le p < n} (d_{ip}^{k/2} + d_{pj}^{k/2})$
 - $D^k = (d^k_{ij})_{0 \le i,j < n}$ computable starting from D^1 using a special form of matrix multiplication with + instead of \times and min instead of +
 - $O(\log^2 n)$ time on the hypercube with n processors
- This can go like this all the way to minimum-weight spanning trees. . .
- Matrix representation for graphs more advantageous on the hypercube than other representations

CS 467/567 (S. D. Bruda) Winter 2023 10 / 12 CS 467/567 (S. D. Bruda) Winter 2023 11 / 12

OTHER INTERESTING NETWORK TOPOLOGIES

- (Binary) tree
 - Degree 3, diameter $O(\log n)$
- Mesh of trees: $n^{1/2}$ identical binary trees of $n^{1/2}$ processors; each set of $n^{1/2}$ "equivalent" processors (in the sense of a preorder traversal) linked to form a binary tree
 - Degree 6, diameter $O(\log n)$
- Star: each processor is labeled with a permitation of $\{1, 2, ..., m\}$ (m! processors for a given m); two processors P_u and P_v are connected with each other whenever the index v can be obtained from the index u by exchanging the first symbol with the i-th symbol for some $2 \le i \le m$
 - Degree m-1, diameter O(m)

CS 467/567 (S. D. Bruda) Winter 2023 12 / 12