

BISHOP'S UNIVERSITY

MATH 190: FINAL EXAM WINTER 2019

Name:	
,	
Student #:	

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Do not remove any pages from this test.
- The back of each page may be used for scrap paper.
- This exam is 180 minutes in length.
- A Casio fx260-solar or Casio fx260-solar II calculator is permitted. No other aids are permitted.
- Remember that Bishop's University has a ZERO-TOLERANCE POLICY for academic misconduct on final exams.

Page	Points	Score		
2	15			
3	15			
4	20			
5	15			
6	15			
7	15			
Total:	95			

1. (5 points) Write 30213_4 in base 1

 $2.\ (5\ \mathrm{points})$ Write $8197\ \mathrm{in}$ base 7.

3. (5 points) Multiply 654_7 and 32_7 , writing the answer in base 7. You may use the standard algorithms.

4. (5 points) Rationalize the denominator of $\frac{2}{5-\sqrt{11}}$.

5. (5 points) Simplify the following, if possible. Avoid all radicals and negative exponents. All fractions must be in reduced form. Brackets must be removed. Like terms must be combined.

$$\frac{\left(-5 x^4 y^3 z\right)^{-2} \left(x^2 y z^{-2}\right)^3}{(y^2 z^3)^2 (2 x y^2 z)^{-4}}$$

6. (5 points) Write as a single fraction and simplify:

$$\frac{1}{2x-1} + \frac{1}{\left(\frac{x}{3} + \frac{1}{6}\right)}.$$

- 7. Expand the following and simplify (remove brackets and combine like terms)
 - (a) (5 points) $(2-x)^3$

(b) (5 points) $(x+3)^2(x-3)^2$

- 8. Completely factor the following
 - (a) (5 points) $q^2 5q 24$

(b) (5 points) $t^4 - 20t^2 + 64$

9. (5 points) Solve $(3x-4)^2 - 25 = 0$

10. (5 points) Solve the following inequality, and write the solution using interval notation.

$$6x^2 + 5x + 1 \le 0$$

11. (5 points) Write the domain of $f(x) = \frac{\sqrt{x+4}}{x^3+3x^2-4x}$ using set-builder notation.

12. (10 points) Consider the graph of the polynomial p(x).

Fill in the blank or circle the answer which makes the sentence true.

- (a) The degree of p is (even / odd)
- (b) The leading coefficient of p is (positive / negative)
- (c) The degree of p must be at least _____.
- (d) The value of p(0) is _____.
- (e) The number of solutions of p(x) = 3 is _____
- 13. (5 points) The perimeter of a rectangle is 300 feet and the length of the rectangle is 3 feet more than twice the width. Find the area of this rectangle.

14. Consider the functions, f and g whose graphs are given below.

(a) (10 points) Complete the following table of values. If a value is not in the domain, write **DNE**.

x	-3	-2	-1	0	1	2	3
$g \circ f(x)$							

(b) (5 points) In reference to the above graphs, evaluate $(f \circ g \circ g \circ g \circ f)(-2)$.