

BISHOP'S UNIVERSITY

MATH 190: FINAL EXAM WINTER 2023

Name:	
Student #:	

- This test is 180 minutes in length.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- You are permitted to use one (1) Authorized Memory Book and a Casio fx-260 Solar (II) calculator.
- Do not remove any pages from this test.
- All answers must be written in the space provided.
- The back of each page may be used for scrap paper.
- Remember that Bishop's University has a ZERO-TOLERANCE POLICY for academic misconduct on final exams.

Page	Points	Score	
2	15		
3	15		
4	15		
5	15		
6	10		
7	10		
8	20		
Total:	100		

1.	(5 points)	Write 54321_6 in base 10.
2.	(5 points)	Write 1234 in base 3.
3.	(5 points)	Multiply 654_8 and 32_8 , writing the answer in base 8. You may use the standard algorithms
	(1 /	

4. (5 points) Rationalize the denominator of $\frac{6}{4+\sqrt{13}}$.

5. (5 points) Simplify the following, if possible. Avoid all radicals and negative exponents. All fractions must be in reduced form. Brackets must be removed. Like terms must be combined.

$$\frac{\left((-2x)^3y^4z\right)^{-3}\left(x^3y^2z^{-2}\right)^2}{(y^3z^2)^4(2xy^2z)^{-7}}$$

6. (5 points) Write as a single fraction and simplify:

$$\frac{1}{x-3} - \frac{1}{\left(\frac{3x}{2} + \frac{5}{4}\right)}.$$

- 7. Expand the following and simplify (remove brackets and combine like terms)
 - (a) (5 points) $(2x-1)^2$

(b) (5 points) $(x-1)^3(x+1)^3$

8. (5 points) Solve $(5x-2)^2 - 64 = 0$

9. (5 points) Write the domain of $f(x) = \frac{\ln(x+8)}{x^2+3x-4}$ using interval notation.

10. (10 points) Fill in the table of values for $f(x) = x^3 - x^2 - 2x + 3$ and plot the graph of f. Remember to properly place and scale the axes.

x	-2	-1	0	1	2
f(x)					

11. (5 points) The perimeter of a rectangle is 300 feet and the length of the rectangle is 1 foot more than twice the width. Find the area of this rectangle.

12. (5 points) The area of a rectangle is 300 square feet and the length of the rectangle is 1 foot more than twice the width. Find the perimeter of the rectangle.

13. Consider the functions, f and g whose graphs are given below.

(a) (5 points) Complete the following table of values. If a value is not in the domain, write **DNE**.

x	-3	-2	-1	0	1	2	3
$f \circ g)(x)$							

(b) (5 points) In reference to the above graphs, evaluate $(f \circ g \circ f \circ g \circ f)(1)$.

- 14. Assume that $\log_{11} 2 = A$, $\log_{11} 3 = B$, $\log_{11} 5 = C$, and $\log_{11} 7 = D$. Evaluate the following values in terms of A, B, C, and D.
 - (a) (5 points) $\log_{11} 12$

(b) (5 points) $\log_{11} \frac{100}{21}$

(c) (5 points) $\log_9(14+63)$

15. (5 points) Solve $4^x - 6 \cdot 2^x + 8 = 0$