

BISHOP'S UNIVERSITY

MATH 197: FINAL EXAM WINTER 2014

Last Name:	
First Name(s):	
Student #:	
Time:	180 minutes

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- All dollar values must be given to the nearest penny, unless otherwise indicated.
- Do not remove any pages from this test.
- \bullet The back of each page may be used for scrap paper.

Page	Points	Score
2	20	
3	9	
4	15	
5	12	
6	16	
7	5	
8	8	
9	8	
10	8	
Total:	101	

1. Differentiate, and DO NOT SIMPLIFY

(a) (4 points)
$$y = 7x^2 - 15x + 5^3 - 7x^{-1}$$

(b) (4 points)
$$f(x) = x^2 e^{2x}$$

(c) (4 points)
$$g(t) = \frac{\ln(t^2 + 1)}{3t^4 + 1}$$

(d) (4 points)
$$w = \log_7 x$$

(e) (4 points)
$$z(s) = \frac{1}{\sqrt{1-s^2}}$$

- 2. Solve for x.
 - (a) (3 points) $15(3^x + 6) = 95$

(b) (3 points) $\ln(x-1) = \ln 12 - \ln x$

(c) (3 points) $4^x - 6 \cdot 2^x + 8 = 0$

- 3. Consider the implicit function $x^2 + 2y^2 = (xy)^2$ (a) (4 points) Find $\frac{dy}{dx}$

(b) (3 points) Find the equation of the tangent line to the curve at the point $\left(\frac{3}{2},3\right)$.

(c) (2 points) Is the graph increasing or decreasing near $\left(\frac{3}{2},3\right)$? Justify your answer.

4. (6 points) Let $f(x) = \ln(1 - x^2)$. Find and simplify f'''(x).

5. (4 points) Use logarithmic differentiation to differentiate $y = \frac{(x^2 - 16)(x^2 + 4)^2}{e^x}$.

6. (8 points) Given that

$$f(x) = xe^{-\frac{x^2}{2}},$$
 $f'(x) = (1 - x^2)e^{-\frac{x^2}{2}},$ and $f''(x) = (x^3 - 3x)e^{-\frac{x^2}{2}}$

Determine the intervals of concavity, and use the second derivative test to classify the critical points.

7. Find the indicated partial derivative(s), and DO NOT SIMPLIFY

(a) (4 points)
$$f(x,y) = (x^2 + y^2 - 4)^3 - 108y^2;$$
 $f_y(x,y)$

(b) (4 points)
$$z = \ln((3x^2 + y^2)(x^2 + 3y^2));$$
 $\frac{\partial z}{\partial x}$

(c) (4 points)
$$f(x, y, z) = (3y + z)(4z - 2x)(5x + 3y);$$
 f_y

(d) (4 points)
$$h(r,s) = \left(\frac{r^4s^4}{r^2+1} - \frac{3r^2s^4}{(r^2+1)^2}\right)^2;$$
 h_s

8. (5 points) Let $f(x, y, z) = \frac{3x^2}{y} + xz^3$. Find all second order partial derivatives.

9. (8 points) Suppose that the total cost, in thousands of dollars, for a manufacturer is given by

$$C(q) = \frac{1}{6}q^3 - 18q^2 + 15q + 500,$$

where q is the quantity of units produced, measured in hundreds. How many units must be produced to minimize **marginal cost**?

10. (8 points) Find and classify the critical points of $f(x,y) = x^3 + 8y^3 - 3x^2 + 6y^2 + 7$.

11. (8 points) A company manufactures open-top crates. The most popular model has a volume of 4 cubic feet. If the material costs \$3 per square foot, find the dimensions of the crate which minimizes the cost.

