

BISHOP'S UNIVERSITY

MATH 197: FINAL EXAM WINTER 2015

Last Name:	
First Name(s):	
Student #:	
Time:	180 minutes

- \bullet Prepare neat solutions. Briefly justify your work, that is, $make\ your\ reasoning\ clear.$
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Do not remove any pages from this test.
- The back of each page may be used for scrap paper.

* +	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	0	1 2	3	4	5	6	7	8	9	10	11
2	0	2	4	5	6	7	8	9	10	11	12
3	0	3	6	9 6	7	8	9	10	11	12	13
4	0	4	8	12	8 16	9	10	11	12	13	14
5	0	5	10	15	20	10 25	11	12	13	14	15
6	0	6	12	18	24	30	12 36	13	14	15	16
7	0	7	14	21	28	35	42	14 49	15	16	17
8	0	8	16	24	32	40	48	56	16 64	17	18
9	0	9	18	27	36	45	54	63	72	18 81	19
10	0	10	20	30	40	50	60	70	80	90	20 100

Page	Points	Score
2	20	
3	11	
4	10	
5	10	
6	16	
7	11	
8	8	
9	8	
10	13	
Total:	107	

1. Differentiate, and DO NOT SIMPLIFY

(a) (4 points) $y = 2x^7 - 3x^5 + 7x^{-2} - 15\sqrt[3]{x}$

(b) (4 points) $f(x) = e^x \ln x$

(c) (4 points) $w = 7^x$

(d) (4 points) $z(s) = (3r^2 + 5s^2r)^3$ where r is a constant.

2. (4 points) Differentiate and simplify $g(t) = \frac{\ln(t^2 + 1)}{1 + \ln(t^2 + 1)}$.

3. (4 points) Use the limit definition of the derivative to find f'(x) when $f(x) = 2x^2 + 3x - 7$.

- 4. Consider the function $y = (\sqrt{x})^{\sqrt{x}}$
 - (a) (4 points) Use logarithmic differentiation to find $\frac{dy}{dx}$.

(b) (3 points) Find the equation of the tangent line to the curve at $x = e^2$.

5. (6 points) Let $f(x) = e^{-\frac{1}{2}x^2}$. Find and simplify $\frac{d^3f}{dx^3}$.

6. (4 points) Suppose that the total cost for a manufacturer is given by

$$C = \frac{4q^2}{\sqrt{q^2 + 7500}} + 200.$$

What is the rate of change of the average cost when q = 50?

7. (10 points) Given that

$$f(x) = \frac{x}{x^2 + 3}$$
, $f'(x) = \frac{3 - x^2}{(x^2 + 3)^2}$, and $f''(x) = \frac{2x(x^2 - 9)}{(x^2 + 3)^3}$

Find the intervals of increase and decrease, and determine the intervals of concavity. Determine the where the relative extrema occur.

8. Find the indicated partial derivative(s), and \overline{DO} \overline{NOT} $\overline{SIMPLIFY}$

(a) (4 points)
$$f(x,y) = x^3y^2 - x(3x - 2y)^2;$$
 $f_x(x,y)$

(b) (4 points)
$$z = \frac{3x^2 + y^2}{x^2 + 3y^2};$$
 $\frac{\partial z}{\partial y}$

(c) (4 points)
$$f(x, y, z) = \frac{3x^2y}{z} + xyz^3;$$
 f_y

(d) (4 points)
$$h(r,s) = (3r^2 + 5s^2r)^3;$$
 h_{rs}

9. (6 points) Let f(x, y, z) = (3y + z)(4z - 2x)(5x + 3y). Find all second order partial derivatives.

10. (5 points) Given the demand equation $p = 22 - \sqrt{q^2 + 29}$, find the elasticity of demand at q = 14, and determine whether demand is elastic, inelastic, or has unit elasticity. Given this information, how should the quantity be change to increase revenue, if possible?

11. (8 points) A farmer wishes to spend \$12,000 in fencing a region of his property which borders a straight road. The fencing he plans to use along the road cost \$10 per foot and the fencing along the other three sides costs \$6 per foot. Find the dimensions of the field which maximize the area of the fenced region.

12. (8 points) Use the method of Lagrange multipliers to find the maximum of $f(x,y) = \frac{1}{2}x^2 - 2y^2 + 7$ subject to the restriction that xy = 2.

13. (8 points) Classify the critical points of $f(p,q) = p^6 + q^6 + 6pq$.

14. (5 points) Suppose that $y'' = 120x^3 - 72x^2 + 6$, and y(0) = 1 and y(1) = 0. Find y.