

BISHOP'S UNIVERSITY

MATH 206: FINAL EXAM

Fall 2013

Name:	
-	
Student #:	
-	

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- The back of each page may be used for scrap paper.
- A Casio fx260-solar or Casio fx260-solar II calculator is permitted. No other aids are permitted.
- Remember that Bishop's University has a ZERO-TOLERANCE POLICY for academic misconduct on final exams.

Page	Points	Score
2	10	
3	8	
4	15	
5	12	
6	20	
7	10	
8	10	
9	15	
10	10	
Total:	110	

1. (10 points) Let $\vec{r}_1(t) = \langle 1, -1, 2 \rangle + t \langle 4, 3, 1 \rangle$ and $\vec{r}_2(t) = t \langle -1, 2, -1 \rangle$ be lines. Find an equation of the plane which is parallel to both \vec{r}_1 and \vec{r}_2 which passes through the point P(3, 1, 4), and compute the distance between the plane and \vec{r}_1 .

2. (8 points) Find equations of the tangents to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$ that pass through the point (4,3).

3. (5 points) Show that the limit $\lim_{(x,y)\to(0,0)} \frac{2xy}{2x^2+y^2}$ does not exist.

4. (10 points) Let $f(x,y) = \frac{x+y}{1-xy}$. Find all second order partial derivatives.

- 5. Let $f(x,y) = 1 + x \ln(xy 5)$.
 - (a) (5 points) Find an equation of the tangent plane to the surface z = f(x, y) when x = 2 and y = 3.

(b) (2 points) Use part (a) to estimate f(2.05, 2.9). You may leave the answer in decimal form provided the answer is exact.

6. (5 points) Let $f(x, y, z) = x^2yz - xyz^3$. Find the rate of change of f in the direction of $\vec{u} = \langle 0, 4, -3 \rangle$ at the point (2, -1, 1).

7. (10 points) Classify the critical points of $f(x,y) = x^3 - 3x + 3xy^2$.

8. (10 points) Find the absolute maximum and minimum values of $f(x,y)=x^4-y^4$ on the disk $x^2+y^2\leq 4$.

9. (10 points) Use the method of Lagrange multipliers to find the maximum and minimum values of f(x, y, z) = xy, subject to the constraint $x^2 + y^2 = 4$.

10. (5 points) Rewrite the iterated integral $\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} (x^3 + xy^2) dy dx$ using polar coordinates. **Do NOT** evaluate the integral.

11. (5 points) Rewrite the iterated integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} x^2 dz dx dy$ using spherical coordinates. **Do NOT evaluate the integral.**

12. (5 points) Evaluate the integral $\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(y) dy dx$ by first reversing the order of integration.

13. (10 points) Let E be the solid region enclosed by the cylinder $y=x^2$ and the planes z=0 and y+z=1. Let $\rho(x,y,z)=x^2+y^2$ be the density at point (x,y,z). Set-up and evaluate the triple integral representing the mass of the solid E.

14. (10 points) Evaluate the iterated integral

$$\iint_{R} \frac{x - 2y}{3x - y} dA,$$

where R is the parallelogram enclosed by the lines x - 2y = 0, x - 2y = 4, 3x - y = 1, and 3x - y = 8 by first making an appropriate change of variables.