

BISHOP'S UNIVERSITY

MATH 207: FINAL EXAM WINTER 2021

Name:	
Student #:	

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- The back of each page may be used for scrap paper.
- A Casio fx260-solar or Casio fx260-solar II calculator is permitted. No other aids are permitted.
- Remember that Bishop's University has a ZERO-TOLERANCE POLICY for academic misconduct on final exams.

Points	Score
10	
10	
10	
5	
10	
15	
5	
20	
15	
100	
	10 10 10 5 10 15 5 20

1. (10 points) Without reference to a potential function, show that $\mathbf{F}(x,y) = \langle e^x \sin y, e^x \cos y + \sin y \rangle$ is conservative and find a function ϕ such that $\mathbf{F} = \nabla \phi$. Use ϕ to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the arc of an ellipse going from (0,0) to $(-1,\frac{\pi}{4})$.

2. (10 points) Use Green's Theorem to find $\oint_C (y^3 dx - x^3 dy)$ where C is the circle $x^2 + y^2 = 4$ travelled counterclockwise.

- 3. For this question, let $\mathbf{F} = \langle x^2yz, xy^2z, xyz^2 \rangle$.
 - (a) (8 points) Find the divergence and curl of \mathbf{F} .
 - (b) (2 points) Is it possible to express \mathbf{F} of part (a) as the gradient of a function f?

4. (5 points) Find the area of the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$.

5. For this question, **SET-UP TO THE POINT OF EVALUATION BUT DO NOT EVALUATE THE INTEGRALS.**

- (a) (5 points) Use Stokes' Theorem to write $\oint_C \mathbf{F} \cdot d\mathbf{r}$ as a double integral, where $\mathbf{F} = \langle 3, z^2, yz \rangle$ and C is the boundary of the paraboloid $y = 4 x^2 z^2$ in the first octant travelled clockwise as viewed from the origin.
- (b) (5 points) Use the Divergence Theorem to write the flux of $\mathbf{F} = 2x^3z\mathbf{i} + 2y^3z\mathbf{j} + 3z^2\mathbf{k}$ across the sphere $x^2 + y^2 + z^2 = 4$, oriented outward, as a triple integral.

- 6. Test the following series for convergence or divergence:
 - (a) (5 points) $\sum_{k=2}^{\infty} \frac{\ln k}{k^2}$
 - (b) (5 points) $\sum_{n=1}^{\infty} \frac{n^n}{2^{2n+1}}$
 - (c) (5 points) $\sum_{i=1}^{\infty} \frac{e^{\frac{1}{i}}}{i^2 + i}$

7. (5 points) Determine, with justification, whether the following series is absolutely convergent, conditionally convergent or divergent: $\sum_{n=1}^{\infty} \frac{(-1)^n}{3n-2}$

8. Let
$$f(x) = \sum_{n=0}^{\infty} (n+1) \frac{x^n}{3^n}$$
.

- (a) (5 points) Find the radius of convergence for f
- (b) (10 points) Find a series for $\int f(x) dx$ and a formula for its sum. (Hint: geometric series)
- (c) (5 points) Find a formula for f(x). (Hint: f(x) is the derivative of $\int f(x) dx$)

9. (15 points) Let $\mathbf{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle$. Find the arclength function for this curve, starting at t = 0 moving in the direction of increasing t. Find $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and κ at t = 1 and determine the center of curvature at this point.

This page is attached for extra work.