BISHOP'S UNIVERSITY

MATH 217: FINAL EXAM WINTER 2013

- This test is 180 minutes in length.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Unless directed otherwise, express your answers in the form x + iy.
- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- 1. (5 points) Show that $\lim_{z\to 0} \frac{z}{\overline{z}}$ does not exist.
- 2. (15 points) Express in the form a + bi, $a, b \in \mathbb{R}$.
 - (a) $(1+i)^{17}$.
 - (b) All solutions to $z^2 + 2z + 1 i = 0$.
 - (c) All solutions to $\sin z = -3i$.
- 3. (4 points) If z = x + iy, for what x and y are all values of 1^z real?
- 4. (4 points) For what values of z is it true that Ln $z^2 = 2$ Ln z.
- 5. (9 points) State the Cauchy-Riemann equations and answer two of the following three parts:
 - (a) Verify that the Cauchy-Riemann equations are satisfied for the function $f(z) = \sin 2z$.
 - (b) Show that if the function f(z) = u(x,y) + iv(x,y) is analytic in a domain D, show that the function

$$g(z) = \overline{f(1-\overline{z})}$$

is also analytic in D.

- (c) Show that if $\phi(x,y)$ is harmonic in a domain D, then $f(z) = \phi_x(x,y) i\phi_y(x,y)$ is analytic in D.
- 6. (4 points) Classify the singular points of $\frac{z^3+1}{z^2(z+1)}$.
- 7. (8 points) Find all Laurent series for

$$f(z) = \frac{z}{(z+1)(z-2)}$$

about z = 0.

- 8. (7 points) Evaluate $\oint_C \frac{\cosh z^2}{z(z^2+4)}$ where C is
 - (a) |z i| = 2, travelled counterclockwise.
 - (b) |z-2|=1, travelled clockwise.
- 9. (5 points) Compute $\oint_C \frac{1}{z \sin z} dz$ where C is the curve |z| = 1 travelled counterclockwise.
- 10. (6 points) Find the principal value of $\int_0^\infty \frac{x^2+1}{x^4+1} dx$
- 11. (10 points) Consider the linear fractional transformation that sends

$$-1 \text{ to } -1$$
 $i \text{ to } 0$
 $1 \text{ to } 1.$

- (a) Find the transformation.
- (b) What does the interior of |z| = 1 get mapped to?
- (c) What are the fixed points?