

BISHOP'S UNIVERSITY

MATH 310/PHYSICS 270: FINAL EXAM FALL 2017

Name:	
Student #:	

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Do not remove any pages from this test.
- The back of each page may be used for scrap paper.
- A Casio fx260-solar or Casio fx260-solar II calculator is permitted. No other electronic calculators are permitted.

Page	Points	Score		
2	20			
3	20			
4	10			
5	10			
6	10			
7	15			
8	15			
Total:	100			
· · · · · · · · · · · · · · · · · · ·				

1. (10 points) Find the general solution of $\frac{dy}{dt} = 3 - 6t + y - 2ty$.

2. (10 points) Solve the initial value problem $2y + xy' = \frac{\sin(x)}{x}$, y(2) = 1 and state the domain of definition.

3. (10 points) Show that $y + \left(2x - \frac{e^y}{y}\right)y' = 0$ becomes exact when multiplied by the integrating factor $\mu(x,y) = y$. Solve the equation with the initial condition y(4) = 1.

4. (10 points) Use the method of undetermined coefficients to find the general solution of $y'' + 2y' + y = 2e^{-t}.$

5. (10 points) Use the method of variation of parameters to solve

$$y'' - y' - 2y = 2e^{-t}, \quad y(0) = 1, \quad y'(0) = 0.$$

6. (10 points) Find the general solution of

$$y''' - y'' + y' - y = \sin(2t)$$

7. (a) (5 points) Write $\frac{d^3y}{dt^3} - 11t\frac{d^2y}{dt^2} + 30t^2\frac{dy}{dt} - 12t^3y = 80\cos(t)$, y(0) = -2, y'(0) = 0, y''(0) = 1, as a system of first order equations.

(b) (5 points) Write the system of equations

$$\vec{\mathbf{x}}' = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \vec{\mathbf{x}}$$

as a single second order equation.

8. (15 points) Solve, and write the solution in terms of real-valued functions:

$$\vec{\mathbf{x}}' = \begin{bmatrix} 2 & 0 & -3 \\ 0 & -2 & 1 \\ 0 & -1 & -2 \end{bmatrix} \vec{\mathbf{x}}, \qquad \vec{\mathbf{x}}(0) = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}.$$

9. (15 points) A tank initially contains 120 L of pure water. A mixture containing a concentration of 3 g/L of salt enters the tank at a rate of $2L/\min$, and the well-stirred mixture leaves the tank at the same rate. Formulate the initial value problem describing the amount of salt in the tank and solve.