

BISHOP'S UNIVERSITY

MATH 315: FINAL EXAM WINTER 2023

Name:	
Student #:	

- This test is 180 minutes in length.
- There are 100 possible points available on this test. The results will be graded out of 90 marks to a maximum of 90/90. To say it differently, there are 10 bonus marks on this test.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- You are permitted to use one (1) Authorized Memory Book and a Casio fx-260 Solar (II) calculator.
- Do not remove any pages from this test.
- All answers must be written in the space provided.
- The back of each page may be used for scrap paper.
- Remember that Bishop's University has a ZERO-TOLERANCE POLICY for academic misconduct on final exams.

Points	Score
10	
10	
10	
10	
20	
10	
10	
10	
10	
100	
	10 10 10 10 20 10 10 10

1. (10 points) Use the definition of convergence to prove the following sequence converges: $\left\{\frac{2-2n}{n}\right\}_{n=1}^{\infty}$.

2. (10 points) Prove directly (without assuming convergent sequences are Cauchy) that if $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are Cauchy, so is $\{a_nb_n\}_{n=1}^{\infty}$. You may use the fact that Cauchy sequences are bounded.

3. (10 points) Define $f:(0,1)\to\mathbb{R}$ by $f(x)=\frac{x^3-x^2+x-1}{x-1}$. Use the definition to prove that f has a limit at x=1.

4. (10 points) A function $f: \mathbb{R} \to \mathbb{R}$ is periodic if and only if there is a real number h > 0 such that f(x+h) = f(x) for all $x \in \mathbb{R}$. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is periodic and continuous, then f is uniformly continuous.

5. (10 points) Let E_1, \ldots, E_n be compact. Prove that $\bigcup_{i=1}^n E_i$ is compact.

6. (10 points) Find an interval of length 1 that contains a root of the equation $x^3 - 6x^2 + 2.826 = 0$.

7. (10 points) Prove that if $f: A \to \mathbb{R}$ is monotone and 1-1, then f^{-1} is monotone and 1-1.

8. (10 points) Determine if the series $\sum_{m=1}^{\infty} \frac{\sqrt{m+1} - \sqrt{m}}{m}$ converges or diverges.

9. (10 points) Test the series $\sum_{n=1}^{\infty} n^p p^n$, p > 0 for convergence.

10. (10 points) Suppose the series $\sum_{n=0}^{\infty} a_n$ converges conditionally. Find all values $x \in \mathbb{R}$ such that $\sum_{n=0}^{\infty} a_n x^n$ converges.