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• This test is 180 minutes in length.

• There are 100 possible points available on this test. The results will be graded out of
90 marks to a maximum of 90/90. To say it differently, there are 10 bonus marks on
this test.

• All answers must be exact (no decimals allowed) unless specifically directed otherwise.

• Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.

• You are permitted to use one (1) Authorized Memory Book and a Casio fx-260 Solar (II)
calculator.

• Do not remove any pages from this test.

• All answers must be written in the space provided.

• The back of each page may be used for scrap paper.

• Remember that Bishop’s University has a ZERO-TOLERANCE POLICY for academic
misconduct on final exams.
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1. (10 points) Use the definition of convergence to prove the following sequence converges:

{
2− 2n

n

}∞
n=1

.
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2. (10 points) Prove directly (without assuming convergent sequences are Cauchy) that if {an}∞n=1 and
{bn}∞n=1 are Cauchy, so is {anbn}∞n=1. You may use the fact that Cauchy sequences are bounded.
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3. (10 points) Define f : (0, 1)→ R by f(x) =
x3 − x2 + x− 1

x− 1
. Use the definition to prove that f has a

limit at x = 1.
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4. (10 points) A function f : R → R is periodic if and only if there is a real number h > 0 such that
f(x+ h) = f(x) for all x ∈ R. Prove that if f : R→ R is periodic and continuous, then f is uniformly
continuous.
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5. (10 points) Let E1, . . . , En be compact. Prove that ∪ni=1Ei is compact.

6. (10 points) Find an interval of length 1 that contains a root of the equation x3 − 6x2 + 2.826 = 0.
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7. (10 points) Prove that if f : A→ R is monotone and 1− 1, then f−1 is monotone and 1− 1.
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8. (10 points) Determine if the series
∞∑

m=1

√
m + 1−

√
m

m
converges or diverges.
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9. (10 points) Test the series
∞∑
n=1

nppn, p > 0 for convergence.
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10. (10 points) Suppose the series
∞∑
n=0

an converges conditionally. Find all values x ∈ R such that
∞∑
n=0

anx
n

converges.


