Contractor

BISHOP'S UNIVERSITY

MATH 317: FINAL EXAM

Fall 2014

- This test is 180 minutes in length.
- All answers must be exact (no decimals allowed) unless specifically directed otherwise.
- Unless directed otherwise, express your answers in the form x + iy.
- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- In the exam booklet, clearly identify the question you are answering.
- 1. (5 points) Write $(2-2i)^7$ in complex exponential form with an argument in the interval $(5\pi, 7\pi]$.
- 2. (5 points) Write $7e^{-i\frac{27}{6}\pi}$ in rectangluar form. All trigonometric functions must be evaluated.
- 3. (5 points) Express in the form a + bi, $a, b \in \mathbb{R}$, all solutions of $\cosh z = -3i$.
- 4. (4 points) Solve Re $(\sinh z) = 0$.
- 5. (4 points) For what values of z is it true that $\operatorname{Ln} \frac{1}{z} = -\operatorname{Ln} z$.
- 6. (4 points) Give an example where it is not true that Arg(zw) = Arg z + Arg w. The numbers z and w must be in rectangular form, fully evaluated, with no trigonometric functions remaining.
- 7. (a) (2 points) State the Cauchy-Riemann equations.
 - (b) (4 points) Without reference to analyticity, verify that the Cauchy-Riemann equations are satisfied for the function $f(z) = z^3$.
 - (c) (3 points) Show that if the function f(z) = u(x,y) + iv(x,y) is analytic in a domain D, show that the function

$$g(z) = -5\left(\overline{f(2i-\overline{z})}\right)$$

is also analytic in D.

- (d) (3 points) If $u(x,y) = ax^3 + bx^2y + cxy^2 + dy^3$, what are (necessary) conditions on the constants $a, b, c, d \in \mathbb{C}$ to guarantee that u is harmonic?
- 8. (4 points) Classify the singular points of $\frac{e^{\frac{1}{z}}}{(z-i)^2(z+3-2i)^3}$.
- 9. (8 points) Find all Laurent series for

$$f(z) = \frac{z+1}{z^2 + 2z + 2}$$

about z = -1 and state where they are convergent. Hint: complete the square in the denominator.

- 10. (5 points) If $f(z) = \sum_{n=0}^{\infty} \frac{3^n}{n!} (z+3i)^{n+2}$, evaluate $\oint_C \frac{f(z)}{(z+3i)^5}$ where C is |z| = 4, travelled counterclockwise.
- 11. (5 points) Compute $\oint_C \frac{1}{z \sin z} dz$ where C is the curve |z| = 1 travelled counterclockwise.
- 12. (6 points) Find the principal value of $\int_{-\infty}^{\infty} \frac{(x+1)^2}{x^4+16} dx$
- 13. Consider the linear fractional transformation that sends

$$-1 \text{ to } 1$$
 $i \text{ to } 0$
 $1 \text{ to } -1.$

- (a) (4 points) Find the transformation.
- (b) (3 points) What does the interior of |z| = 1 get mapped to? You may sketch your answer.
- (c) (3 points) What are the fixed points?