BISHOP'S UNIVERSITY

MATH 406: FINAL EXAM WINTER 2021

- This exam is due no later than 11:59pm on April 30, 2021.
- Your solutions are to be scanned into a single PDF document and uploaded to Moodle.
- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- Marks will be awarded for progress towards a solution as well as for the solution of a problem.
- The work must be your work, Make sure you are aware of the plagiarism policy outlined in the Academic Calendar.
- 1. (5 points) Consider a curve $\mathbf{p}(t)$ in the (x,y)-plane. Prove that

$$\kappa(t) = \frac{(\mathbf{p}'(t) \times \mathbf{p}''(t)) \cdot \mathbf{k}}{|\mathbf{p}'(t)|^3}.$$

- 2. Consider the curve, C, given by $x^4 + y^4 = 2$.
 - (a) (5 points) Find the curvature $\kappa(t)$ and evaluate at the point P(-1,1).
 - (b) (5 points) Find the vertices of C.
 - (c) (5 points) Find the total curvature μ of C.
 - (d) (5 points) Determine the width of the curve C.
- 3. Let $\mathbf{p}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle$.
 - (a) (5 points) Find $\mathbf{e}_1, \mathbf{e}_2$, and \mathbf{e}_3 .
 - (b) (5 points) Compute $\kappa(t)$ and $\tau(t)$.
 - (c) (5 points) Verify the Frenet-Serret's formula for this curve.
- 4. Consider the surface, S, parameterized by $\mathbf{p}(u,v) = \langle u-2v, u^2+v^2, u+2v \rangle$.
 - (a) (5 points) Compute the first and second fundamental forms.
 - (b) (5 points) Calculate the Christoffel's symbols.
 - (c) (5 points) Compute K and H.
 - (d) (5 points) Find the 1-forms θ^1, θ^2 , and ω_2^1 and verify that $d\omega_2^1 = K\theta^1 \wedge \theta^2$.
- 5. Let $ds^2 = dr \wedge dr + \sinh^2 r d\theta \wedge d\theta$ be a metric on the domain $H = \{(r, \theta) \mid r > 0, 0 \le \theta < 2\pi\}$.
 - (a) (5 points) Find the Gaussian curvature.
 - (b) (5 points) Determine the parallel vector fields along a curve r = a, $\theta = t$ with a > 0 and $0 \le t < 2\pi$.
 - (c) (5 points) Calculate the geodesics on H with this metric.
- 6. The differential 1-form

$$\phi = \frac{udv - vdu}{u^2 + v^2}$$

is defined on the punctured (u, v)-plane (the (u, v)-plane excluding the origin.)

- (a) (5 points) Prove that $d\phi = 0$.
- (b) (5 points) Integrate ϕ along the unit circle, centered at the origin, with positive (counter-clockwise) orientation.
- (c) (5 points) Does there exist a function f such that $df = \phi$ on the punctured (u, v)-plane?