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Abstract

Ever since M. King Hubbert’s accurate prediction in 1956 that US oil production would
peak in 1970 [6], oil modeling has been given a lot of attention. This paper presents a summary
of various models of oil production and reserves, as well as the methods used to find optimal
parameter values when no exact solution could be found, as is the case with many inverse
problems. Comparisons between models and analyses of the validity of the results are also
discussed.
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1 Introduction

In the United States, oil production began in Pennsylvania in 1859 [4, 6]. Although attention
to alternative energy sources has been growing during the past decades, many countries still rely
heavily on oil. If we were to run out of this resource tomorrow, a very harsh reality would set in,
a reality similar to, but much worse than that which surrounded the 1973 oil crisis. But when will
we run out of oil? In 1956, M. King Hubbert accurately predicted that a peak in oil production
in the United States would occur in 1970 [6], and this prediction brought a lot of attention to this
matter. The question “When will we run out of oil?” is one that many have asked themselves and
which has led to various predictions of the timing of peak production and the ultimate depletion
of oil reserves. This paper presents a summary of the various models that we developed as well as
their respective predictions. Our first idea starts with a system of differential equations based on
a logistic model and our second main idea is a modified Hubbert model with a varying carrying
capacity. Modifications to these models as well as various methods used to solve them are also
presented.

(a) Proved reserves data from 1980 to 2016 (b) Production data from 1965 to 2016

Figure 1: BP Proved Reserves and Production Data

Figure 1 presents the proved oil reserve data (in Gbbl) and production data (in Gbbl/year)
from the BP Statistical Review of World Energy [13] that was released in June of 2017. In these
graphs, 1965 corresponds to time t = 1. Production data begins in 1965 whereas the data for proved
reserves only dates back to 1980. The term proved reserves refers to the “quantities that geological
and engineering information indicates with reasonable certainty can be recovered in the future from
known reservoirs under existing economic and operating conditions” (British Petroleum) [13]. From
now on, the term reserves will be used interchangeably with proved reserves. Another expression
that will often be used is cumulative production, or simply cumulative. This refers to the total
amount of oil that has been pumped, up to a given year, since the beginning of production. Data
for 1978 cumulative was taken from Gallagher’s publication [4] to be 416.481 Gbbl and then BP’s
data was used to calculate the remaining cumulative data in the following way: Qi = Qi−1 + Pi,
where Q is cumulative and P is production.

Readers are encouraged to consult papers written by Hubbert [6], Maggio and Cacciola [11],
Gallagher [4] and Brandt [3] for more information on previous models and predictions that were
published.
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2 Starting Model

Our first approach was to use a logistic-based model, modified in order to describe physical prop-
erties as well. It consists of a system of three nonlinear, first order differential equations relating
production (P), reserves (R) and cumulative production (Q). Note that production is the rate of
change of the cumulative.

P ′(t) = rP (R− bP )− εQ (1)

R′(t) = −P+αR(1− βR)

Q′(t) = P

This model contains three variables (P , R and Q) dependent on time and five parameters (r,
b, α, β, ε). Some of these parameters have a physical meaning. The first equation in this model
has logistic-type growth that is decreased by an environmental concern proportional to cumulative,
with proportionality constant ε. The constant b is an alarm rate, or the number of years left at
current production before production declines (in the absence of any environmental concern). In the
second differential equation, there is a −P term since the reserves should decrease by the amount
of oil pumped out. The second term in that equation represents the growth of the reserves due
to new oil discoveries, thereby defining α as an effort parameter. With improving technologies,
reserves have increased over time instead of decreasing by the amount pumped. In other words, the
quantity of new oil found surpassed the amount produced. Another model will deal with this issue
by modifying the reserve data.

The main difficulty with this model is that we were unable to solve it analytically; that is, no
exact solution to the system of differential equations was found. We therefore proceeded with nu-
merical solutions using Maple. With no known form of the solution, it is difficult to find parameters
which optimally fit the known P (t) and R(t) data; however, the physical meanings of some of the
parameters allowed us to impose restrictions on some of them. For instance, all of the parameters
had to be positive. The alarm rate b has units of years, so a reasonable number of years had to be
chosen. For example, an alarm rate of one year was not considered to be reasonable, but an alarm
rate of at least 10 years was thought to be realistic.

We often considered the phase diagram, plotting reserves versus production from t = 1 to t = n,
where n is the number of data points. We then chose parameters that appeared to fit the data well.
However, we had no method to determine the best-fit parameters.

3 Environmental Concern Modification

In our starting model presented in section 2, the environmental concern term consisted of a pro-
portionality constant applied to the cumulative production, but is that the most realistic model?
Does the environmental concern really depend on all of the oil produced since the beginning of
production? Possibly, but when considering this, we decided to change the environmental concern
term to depend on production instead of cumulative. The rationale behind this is that if production
increases, then the environmental concern will also increase accordingly, and hence changes in this
term would depend more heavily on changes in production than on cumulative production. We can
then reduce our model down to two equations.

P ′ = rP (R− bP )− εP = rP
(
R− bP − ε

r

)
(2)

R′ = −P + αR(1− βR)
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3.1 Algebraic Simplifications

This modification simplified a little the system of differential equations, but still no analytic solution
was found, forcing us to consider, once again, numerical solutions. The following manipulations
were done in hopes of solving it exactly.

P ′ = rP
(
R− bP − ε

r

)
and R′ = −P + αR(1− βR)

dR

dP
=
−P + αR(1− βR)

rP (R− bP − ε
r )

rP
(
R− bP − ε

r

) dR
dP

= −P + αR(1− βR) (3)

(
R− bP − ε

r

) dR
dP

= −1

r
+
αR

rP
(1− βR)

Let S(P ) = R− bP − ε
r

Then,

R = S(P ) + bP +
ε

r

dS

dP
=
dR

dP
− b

dR

dP
=
dS

dP
+ b = S′ + b

S(S′ + b) = −1

r
+

α

rP

(
S + bP +

ε

r

)(
1− β

(
S + bP +

ε

r

))
SS′ = −1

r
− bS +

α

rP

(
S + bP +

ε

r

)
− αβ

rP

[
S2 + 2

(
bP +

ε

r

)
S +

(
bP +

ε

r

)2]
SS′ = −αβ

rP
S2 −

[
2αβ

rP

(
bP +

ε

r

)
+ b− α

rP

]
S −

[
αβ

rP

(
bP +

ε

r

)2
+

1

r
− α

rP

(
bP +

ε

r

)]

Let γ = αβ
r

SS′ = − γ
P
S2−

[
(2γ + 1)b+

1

rP
(2γε− α)

]
︸ ︷︷ ︸

g(P )

S−
[

1

P

(
γ
(
bP +

ε

r

)
− α

r

)(
bP +

ε

r

)
+

1

r

]
︸ ︷︷ ︸

h(P )

Let S(P ) = E(P )w(P ) where E(P ) = e−
∫ γ
P dP = e−γln(P ) = P−γ

Then, ww′P = F1(P )w + F0(P ) where F1(P ) = g(P )
E(P ) and F0(P ) = h(P )

E(P )2

F1(P ) = −P γ
[
(2γ + 1)b+

1

rP
(2γε− α)

]

F0(P ) = −P 2γ

[
1

P

(
γ
(
bP +

ε

r

)
− α

r

)(
bP +

ε

r

)
+

1

r

]
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Let x = P

F1(x) = −xγ
[
(2γ + 1)b+

1

rx
(2γε− α)

]
= −xγ−1

[
(2γ + 1)bx+

(2γε− α)

r

]

F0(x) = −x2γ
[

1

x

(
γ
(
bx+

ε

r

)
− α

r

)(
bx+

ε

r

)
+

1

r

]
= −x2γ−1

[(
γ
(
bx+

ε

r

)
− α

r

)(
bx+

ε

r

)
+
x

r

]
= −x2γ−1

[
γb2x2 +

(
b

(
2γε− α

r

)
+

1

r

)
x+

(
γε− α
r

)(ε
r

)]
= −x2γ−1

[
b2γx2 +

(
bγε

r
+ b

(
γε− α
r

)
+

1

r

)
x+

(
γε− α
r

)(ε
r

)]
= −x2γ−1

[
b2γx2 +

1

r
(2bγε− bα+ 1)x+

1

r2
(ε2γ − αε)

]

Let y = rx
Then,

x =
y

r

y2 = r2x2

x2 =
y2

r2

F̂1(y) = F1(yr ) = −y
γ−1

rγ [(2γ + 1)by + (2γε− α)]

F̂0(y) = F0(yr ) = −y
2γ−1

r2γ+1

[
b2γy2 + (2bγε− bα+ 1)y + (ε2γ − αε)

]
ww′x = ww′(y)r = F̂1(y)w + F̂0(y)

dw

dx
=
dw

dy
· dy
dx

=
dw

dy
r

ww′y = −y
γ−1

rγ+1
[(2γ + 1)by + (2γε− α)]︸ ︷︷ ︸

F̃1(y)

w − y2γ−1

r2γ+2

[
b2γy2 + (2bγε− bα+ 1)y + (ε2γ − εα)

]︸ ︷︷ ︸
F̃0(y)

ww′y = −y
γ−1

rγ+1
F̃1(y)w − y2γ−1

r2γ+2
F̃0(y)

Let u = yaw
ra

Then,

u′ =
1

ra
(aya−1w + yaw′) =

au

y
+
yaw′

ra

yaw′

ra
= u′ − au

y
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w′ =
ra

ya

(
u′ − au

y

)
ww′ =

r2a

y2a
u

(
u′ − au

y

)
r2a

y2a

(
uu′ − au2

y

)
= −y

γ−1

rγ+1
F̃1(y)

ra

ya
u− y2γ−1

r2γ+2
F̃0(y)

uu′ − au2

y
= −y

a+γ−1

ra+γ+1
F̃1(y)u− y2a+2γ−1

r2a+2γ+2
F̃0(y)

yuu′ = au2 − ya+γ

ra+γ+1
F̃1(y)u− y2(a+γ)

r2(a+γ+1)
F̃0(y)

Let a = −γ
Then,

yuu′ = −γu2 − 1

r
F̃1(y)u− 1

r2
F̃0(y) (4)

F̃1(y) = b(2γ + 1)y + (2γε− α)
F̃0(y) = b2γy2 + (2bγε− bα+ 1)y + (ε2γ − εα)

Eq. 4 is a simplified version of the Abel differential equation of the second kind that was started
with (Eq. 3), but it was not found to be solvable.

3.2 Results

By varying the parameter values, it is possible to obtain models that loop around a critical point
of the system, also called a fixed point. Figure 2a presents one of these situations that models from
time t = 1 (1980) to t = 1000. A scale of 3

5 was applied to the model and parameters of b = 12.86,

e = 0.00805, α = 0.1, β = 1/4000 and r =

(
−αβ

(
R2

0
P0

)
+α

R0
P0
−1
)

(R[35]−R[1]
P [35]−P [1]

(R0−bP0))
were chosen. The data points are

in black, the model is in red and the direction field is in magenta. The green and blue lines are the
null lines of the steady state when R′ = 0 and P ′ = 0. The fixed point is located at the intersection
of the two null lines.

All of our results found so far using this model have been guesses. We have tried various
parameter sets and varied each parameter until we obtained a model that appeared to fit the data
well. In doing so, some models went to a fixed point right away, others looped around a fixed point
and others yet crashed. In other words, reserves hit zero while we were still pumping out a lot of
oil, which would make for a hard landing. However, we did not know that there wasn’t another set
of parameters, perhaps completely different, that would produce a better fit. Also, we didn’t know
which of these models was the most realistic. Hence, we proceeded with the collage method that
can determine optimal parameters without a known form of the solution.

4 Collage Coding Method

This method is a fractal-based collage coding method that can determine optimal parameters for
inverse problems like ours. Inverse problems often describe real-world situations for which data
is commonly available. The problem with finding parameters for inverse problems is that most
methods are based on iterative methods that are computationally heavy and that require a good
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(a) 1980-2015 Reserves vs Production (b) Reserves (black) and production (red) in time

Figure 2: Reserves and Production

starting point, which is not always known [5, p. 243]. A brief explanation of this method will be
given, but readers are encouraged to consult [5] for a complete description. The general idea can
be explained in three steps:

1. Find a polynomial basis representation for the data
2. Find a target to the polynomial basis
3. Find a fixed point approximation to the target

4.1 Mathematical Description

The basis of this method is to “express the problem in terms of a contractive map on a complete
metric space” [8, p. 125] so that Banach’s fixed point theorem can then be used. We will let (X, d)
be a complete metric space and Con(X) be a set of contraction maps on X [8]. Then, a contractive
map is defined in the following way by Kunze, La Torre, Mendivil and Vrscay (2012) [5, p. 21]:

A function f : X → X is a contraction if there is some c ∈ [0, 1) with d(f(x), f(y)) ≤
c d(x, y) for all x, y ∈ X. The smallest such constant c is the contraction factor for the
contraction f .

This method then uses Banach’s fixed point theorem which states that there is a unique fixed
point x ∈ X where f(x) = x [5], [8]. Kunze and Heidler (2007) define the set of fixed points in the
following way [8, p. 125]:

Let FP (X) denote the set of all fixed points of the contraction maps in Con(X), i.e.
FP (X) = {x ∈ X | x = f(x) for some f ∈ Con(X)}.

The goal of this method is then to find the best fixed point that approximates an element x ∈ X,
assuming one exists [8]. “Instead of searching for contraction maps whose fixed points lie close to y,
[this method] search[es] for contraction maps that send y close to itself.” [9] There are two types of
errors in this method, a collage error, also called collage distance, d(x, f(x)), and an approximation
error, d(x, x). Collage coding aims to minimize the approximation error by minimizing the collage
error [5, p. 17]. Finding the best fixed points is difficult, so this is where collage coding is used [8,
p. 125]. Kunze and Heidler (2007) describe the collage theorem [8, p. 125]:
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Let x ∈ X and f ∈ Con(X) with fixed point x and contraction factor c ∈ [0, 1). Then,
d(x, x) ≤ 1

1−cd(x, f(x)).

The proof of the collage theorem is fairly simple, relying on the triangle inequality as well as
the definitions of a contraction and a fixed point.

d(x, x) ≤ d(x, f(x)) + d(f(x), x)

= d(x, f(x)) + d(f(x), f(x))

≤ d(x, f(x)) + c d(x, x)

Thanks to Maple worksheets, specific to this model, that were provided to us, we were able to
modify them to fit our model. We defined the system of differential equations to be the same as the
modified environmental concern model presented in Eq. 2, and chose initial values that appeared
to fit the data well. However, we were also able to leave the initial conditions as parameters, thus
increasing the number of parameters to seven. We then assigned starting values to the parameters
based on our previous models’ results. We also chose the form of our differential equations; that is,
which terms and cross terms we wanted. We were then able to find a polynomial basis, of desired
order, that approximated either our actual data points or noisy data generated by the assigned
parameters. A Riemann sum approximated the Euclidean, L2, distance and the best fit polynomial
basis representation was determined by least-squares.

Now that we had a polynomial basis representation for our data, we created the Picard map and
calculated the collage distance. Then, we used a least-squares approach to solve for the optimal
parameters in our system of differential equations. The Picard operator T is defined as follows [8,
p. 126]:

v(t) = (Tu)(t) = x0 +

∫ t

t0

f(t, y(t))dt (5)

The collage distance is defined in the following way, assuming that x(t) is the target function
and t ∈ [0, 1] [8, p. 126]:

∆ =

(∫ 1

0

(x(t)− (Tx)(t))2dt

) 1
2

=

(∫ 1

0

[
x(t)− x0 −

∫ 1

0

f(x(s), s)ds

]2
dt

) 1
2

(6)

4.2 Hubbert Model Ultimately Recoverable Reserves

We decided to test this method by finding the ultimately recoverable reserves for the Hubbert
Model. The target was an 8th degree polynomial. Figure 3a presents the polynomial target in red,
with coefficients determined from the minimal error, with the cumulative production data points
in blue. The Hubbert Model is of the form f(x) = c1x+ c2x

2. We minimized the collage distance
to 13.96925195, and the values of c1, c2 and x0 were found to be:

c1 = 0.04693173036

c2 = −0.00001829722704

x0 = 472.0746334

The fixed point approximation of the target was then found to be the following:

d

dt
y(t) + 0.00001829722704y(t)2 − 0.04693173036y(t)
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Figure 3b presents the cumulative data in blue, the target in red and the fixed point approxi-
mation of the target in green.

(a) Cumulative Production data and 8th degree poly-
nomial target

(b) Data, target and fixed point approximation for the
Hubbert Model

Figure 3: Data, target and fixed point approximation for the Hubbert Model

Comparing the actual Hubbert Model, Q′ = rQ−
(

r
Q∞

)
Q2 to the fixed point approximation,

f(x) = c1x+ c2x
2, Q∞ can be found to be similar to the expected value, thus validating our use of

this method.

Q∞ = −c1
c2

= 2564.964093 Gbbl

It is worth noting that the order of the target polynomial has a big effect on the results. For
example, if the order is changed from 8th degree to 10th degree, Q∞ changes to around 3852 Gbbl,
but it is about 2558 Gbbl for a cubic target.

4.3 Results

Presented here are a few models that were obtained by varying the form of the differential equations
as well as the basis order. The error associated with these models varies, and the signs of the
parameters are not all correct. Note that the error given in the following sections refers to the collage
distance and not the approximation error. Most notably, the environmental concern parameter, ε,
is of the wrong sign, which does not, in our opinion, make sense. This parameter models efforts to
reduce production for environmental reasons, so it would be inconsistent if it increased production by
being of opposite sign. We will include our results from this method in this report for completeness,
but we dismissed them due to their incompatability with our model.
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4.3.1 First Model

Our first attempt consisted of a first order basis representation, without matching the initial con-
ditions, and with P ′ having P , P 2 and PR terms, and R′ having P , R and R2 terms.

P ′ = −0.032148034168089058246P+0.0043672166072849053384P 2−0.000057339310876989129803PR

P0 = 19.974905832764888498

Error = 0.098571373241145769045

R′ = 2.4365541015030441275P − 0.028618478363650151967R− 4.1087123300256113000 · 10−20R2

R0 = 668.23814470000002631

Error = 5.6910871869364278612 · 10−14

(a) Production basis and data (b) Reserve basis and data

Figure 4: Production and reserve bases and data

Figure 5: Reserve vs Production, 3.5·period

This model loops back with time, meaning that production peaks at around 35 Gbbl/year and
then decreases without a hard landing.
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4.3.2 Second Model

Our second attempt consisted of a 6th order basis representation, without matching the initial
conditions, and with P ′ and R′ both having P , R, P 2, PR, and R2 terms.

P ′ = 0.62962430310702150210P − 0.012745570439809795537R− 0.062247491492436303380P 2

+0.0021366537600882580698PR− 0.000017553241686787580157R2

P0 = 25.504609052027645193

Error = 1.6106603462555350313

R′ = 75.738886293239004981P − 1.6399274982927759915R− 4.7484205396204981535P 2

+0.14637618409692176092PR− 0.00092748551915847212905R2

R0 = 740.97444944179674915

Error = 67.230038152599616088

(a) Production basis and data (b) Reserve basis and data

Figure 6: Production and reserve bases and data

Figure 7: Reserve vs Production, 3.5·period

This model loops around a fixed point.
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4.3.3 Third Model

Our third attempt consisted of a 12th order basis representation, without matching the initial
conditions, and with P ′ and R′ both having P , R, P 2, PR, and R2 terms.

P ′ = 0.73841118963942003645P − 0.014730920028491451966R− 0.067951903846823814706P 2

+0.0022504681399918582082PR− 0.000017655685271896626093R2

P0 = 25.044092671110087229

Error = 1.6517761046824717884

R′ = 117.72362695675446678P − 2.5309202431232886777R− 7.7599907474222749563P 2

+0.23942833908514578176PR− 0.0015467515252267496010R2

R0 = 816.56075300456227973

Error = 118.07404935039705836

(a) Production basis and data (b) Reserve basis and data

Figure 8: Production and reserve bases and data

Figure 9: Reserve vs Production, 3.5·period

This model also loops around a fixed point, but the critical point is located at higher reserves
and production than the previous model.
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4.3.4 Fourth Model

Our fourth attempt consisted of a third order basis representation, without matching the initial
conditions, and with P ′ having P , P 2 and PR terms, and R′ having P , R and R2 terms.

P ′ = 0.052192832694485568555P−0.0039651889748620040889P 2+0.000053826553850260864593PR

P0 = 21.156721261713759792

Error = 2.0697635239757511970

R′ = 8.5858165431966003026P − 0.21395973006810814735R+ 0.000041716594856546941939R2

R0 = 564.96577078317953614

Error = 98.917152505977687995

(a) Production basis and data (b) Reserve basis and data

Figure 10: Production and reserve bases and data

Figure 11: Reserve vs Production, 1.5·period

This model heads off to a fixed point right away without any looping behaviour.
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4.3.5 Fifth Model

Although producing interesting models, our results obtained so far with collage coding method did
not fit with our model, so we imposed restrictions on some of the parameters in hopes of getting
more realistic parameters. We imposed −1 for the coefficient of the production term in the reserves
differential equation, which can be explained physically by a decrease in reserves by the amount
pumped out, and we were obliged to impose a value for ε, determined from our previous model.
These restrictions led to the following results with a sixth order basis representation. The actual
data is in black and the generated data is in red, presented in figure 12a. The parameter values
are as follows: α = 0.079064049640094891359, ε = 0.00805, r = 0.000028390474956398582703,
b = 16.077912738485876713 and β = 0.00028621790382326287875. These parameters are fairly
similar to our initial set of parameters in our first model. However, we imposed some restrictions
based on that model as well, so it is not surprising that both sets of parameters are alike. Now
that we have values for all of the parameters, we could then plot the direction field along with the
model and the actual data, as shown in figure 12b.

(a) Reserve vs Production, 22.5·period (b) Reserves vs Production with Direction Field

Figure 12: Fifth model reserves vs production

5 Modified Hubbert Model with Varying Carrying Capacity

5.1 Hubbert Model

Hubbert used a logistic function to model oil production (Eq. 7). However, the carrying capacity
(Q∞) that he used for world oil was approximately 1250 Gbbl [6, p. 17], and we now know that
this greatly underestimated the total amount of oil that can be produced. Therefore, we decided
to keep Hubbert’s logistic model, but modify it so that the carrying capacity is no longer constant,
but a logistic function as well.

P = Q′ = rQ

(
1− Q

Q∞

)
(7)

5.2 Maximum Cumulative Data

Figure 1a presents the proved oil reserve data (in Gbbl) from the BP Statistical Review of World
Energy 2017 [13]. The reserves increase almost every year during this time interval, which can be
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explained not by an actual increase in the ultimate amount of oil in the ground since 1859, but by
developing technologies that enable the discovery of new oil fields and more oil from existing ones.
Therefore, our data for oil reserves does not reflect the actual amount of oil left in the ground that
can be pumped out. With this in mind, we wished to modify the reserve data so that it would follow
a decreasing path, based on an initial quantity that is not significantly increased, as was suggested
by M. King Hubbert in 1956 [6, p. 4]. Defining a sequence of maximum cumulative production
values (Qmax) to be the sum of the reserves at that time and cumulative production up to that
year (Eq. 8), we can then fit these points to a logistic model. The carrying capacity, or limiting
value, of this logistic equation, Qmax∞, will hence be the total initial reserves at the beginning of
time, according to this model.

Qmax(t) = R(t) +Q(t) (8)

5.2.1 Maple’s Nonlinear Fit for the Maximum Cumulative Data

The following model was obtained using Maple’s Nonlinear Fit command (Eq. 9). Figure 13
presents the Qmax points (in Gbbl) as well as the logistic curve. Time t = 1 corresponds to 1965.

Qmax =
5069.629978532037

1 + e(1.928947798260190−0.04670827803485237t)
(9)

Figure 13: Qmax data from 1980 to 2016 and the logistic curve

Hubbert had predicted in 1956 that the ultimately recoverable reserves (URR) [11, p. 112] would
be 1250 billion barrels [6, p. 17]. The URR, called here Qmax∞, is now almost 5070 Gbbl, more
than four times larger than Hubbert’s prediction. In our opinion, this is a much more realistic value
for the total reserves. The inflection point of this logistic function occurs at time t = 41.298, which
corresponds to the year 2005. This implies that, according to this model, the growth rate of Qmax
peaked about 12 years ago, when Qmax had a value of approximately 2534.815 Gbbl. This does
not quite fit with the data that we have, but it is not an unrealistic value either in our opinion.

5.2.2 Root-Mean-Squared Error

In order to test the validity of Maple’s Nonlinear Fit, we can determine Qmax∞ that minimizes the
root-mean-squared error. Results from the 1980 onwards data are shown here. This procedure was
repeated with the 1965 onwards data, but due to the abnormal peak prior to 1980, the error was
found to be much larger. That being said, the purpose of doing this was to validate Maple’s results,
and this goal was achieved. RMSE in Eq. 10 refers to the root-mean-squared error.
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Qmax =
Qmax∞

1 + eb−rt

b+ rt = ln

(
Qmax∞
Qmax

− 1

)
b+ rt := Y (t;Qmax∞)

r(Qmax∞) =
SSty
SStt

=

∑
tiYi(Qmax∞)− ntY (Qmax∞)∑

t2i − nt
2

b(Qmax∞) = Y (Qmax∞)− r(Qmax∞)t

RMSE =

√√√√ 1

n

(
n∑
i=1

(
Qmax[i]− Qmax∞

1 + eb−rt

)2
)

(10)

Calculating these quantities using the maximum cumulative data found by using Eq. 8, the
following graph of the root-mean-squared error as a function of Qmax∞ was obtained. The total
initial reserve value that minimizes the error is approximately 5133 Gbbl.

Figure 14: Root-mean-squared error as a function of Qmax∞

The Qmax∞ value obtained through Maple’s Nonlinear Fit for 1980 onwards data (t = 1 being
1980) was about 5170 Gbbl compared to this value of 5133 Gbbl. The two values are not exactly
the same, but they are close enough, in our opinion, to give validity to Maple’s result.

5.3 Modified Reserve Data

It is now possible to define a modified reserve data sequence to be the cumulative production up to
that time subtracted from the total initial reserves.

Rmod(t) = Qmax∞ −Q(t) (11)

Figure 15 shows the modified reserve data with respect to time, 1965 being time t = 1. The
reserves are now strictly decreasing from year to year by the amount produced. In our opinion, this
data is more realistic since reserves should be decreasing with time, not increasing as the actual
proved reserves data indicates.
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Figure 15: Modified reserve data

5.4 Model

Now that we have defined some new data sequences, we can create our new model based on Hub-
bert’s logistic model (Eq. 7), but using a varying carrying capacity.

Qmax(t) = R(t) +Q(t)

Rmod(t) = Qmax(∞)−Q(t)

Q′max(t) = r̂Qmax

(
1− Qmax

Qmax∞

)
(12)

P = Q′(t) = rQ

(
1− Q

Qmax(t)

)
(13)

Eq. 12 is a logistic function with a known solution of the form Qmax = Qmax∞
1+eb−r̂t

. We can then
substitute this solution into Eq. 13, the latter becoming a Bernoulli differential equation that can
be solved.

P = Q′ = rQ

(
1− Q

Qmax∞
1+eb−r̂t

)
= rQ

(
1− Q(1 + eb−r̂t)

Qmax∞

)
= rQ− rQ2

Qmax∞
(1 + eb−r̂t)

Q′ − rQ = − rQ2

Qmax∞
(1 + eb−r̂t)

Q−2Q′ − rQ−1 = − r

Qmax∞
(1 + eb−r̂t)

We can now use the following substitution to solve the Bernoulli Equation:

v = Q1−n and v′ = (1− n)Q−nQ′

With n = 2, this becomes:
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v = Q−1 and v′ = −Q−2Q′

v′ + rv =
r

Qmax∞
(1 + eb−r̂t)

This is now a first order, linear differential equation that can be solved using the integrating
factor method.

µ = e
∫
P (t)dt = e

∫
rdt = ert

v(t) =
1

µ(t)

∫
µ(t)g(t)dt

=
1

ert

∫
ert
(

r

Qmax∞
(1 + eb−r̂t)

)
dt

= e−rt
∫

rert

Qmax∞
+

rert

Qmax∞
(eb−r̂t)dt

= e−rt
∫

rert

Qmax∞
+
reb+(r−r̂)t

Qmax∞
dt

= e−rt
(

rert

Qmax∞r
+

reb+(r−r̂)t

Qmax∞(r − r̂)
+ C

)
=

1

Qmax∞
+

reb−r̂t

Qmax∞(r − r̂)
+ Ce−rt

1

Q
=

1

Qmax∞

(
1 +

r

r − r̂
eb−r̂t

)
+ Ce−rt

Q =
1

1
Qmax∞

(
1 + r

r−r̂ e
b−r̂t

)
+ Ce−rt

We now have explicit equations for cumulative production, production and reserves that depend
on time. Our model is therefore the following:

Q(t) =
1

1
Qmax∞

(
1 + r

r−r̂ e
b−r̂t

)
+ Ce−rt

(14)

Rmod(t) = Qmax∞ −Q(t) = Qmax∞ −
1

1
Qmax∞

(
1 + r

r−r̂ e
b−r̂t

)
+ Ce−rt

(15)

P = rQ

(
1− Q(1 + eb−r̂t)

Qmax∞

)
(16)
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5.5 Maple’s Nonlinear Fit for the Cumulative Data

Using the values ofQmax∞ = 5169.805767754234, b = 1.204234580691476 and r̂ = 0.04600654508814379,
and knowing the form of the cumulative function, we can use Maple’s Nonlinear Fit to determine
the values of the parameters r and C. Imposing parameter ranges (r = [0, 0.5] and C = [−1, 1]),
values of r = 0.04214247362704284 and C = 0.008570049495435710 are found to be the optimal
parameters. It is then possible to graph cumulative, reserve and production data as well as their
time-dependent functions defined in Eqs. 14, 15 and 16. Figures 16 and 17 present these results,
where time t = 1 corresponds to 1980.

(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 16: Cumulative and Modified Reserves

Figure 17: Production data (black) and function with respect to time

This model fits the second half of the cumulative and modified reserve data acceptably, but it
does not fit the first half of this data or the production well at all. Note that in the way that we
defined the modified reserve data and the cumulative data, these are directly linked. Hence, if the
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model fits one of these data sequences, it will automatically fit the other.

It is important to note that imposing different parameter ranges will produce different optimal
parameters. For example, another set of parameters that was obtained is r = 0.05141658892710616
and C = −0.004326009345853979. Figures 18 and 19 present these results. These parameters
appear to fit the data a bit better. However, in both cases, the production model does not appear
to fit the data very well. With the first set of parameters, production peaks at around time t = 70,
so 2049, and in the second case, peak production (of 52.21783410854544 Gbbl) occurs at time
t = 61.391259942, which corresponds to around 2040. In the second model, reserves would be down
to about 33 Gbbl (roughly the same amount as produced in 2015) at time t = 178, so in 2157. That
being said, according to this model, production decreases after 2040, so the yearly production in
2157 would only be about 1.44 Gbbl.

(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 18: Cumulative and Modified Reserves

Figure 19: Production data (black) and function with respect to time
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5.6 Maple’s Nonlinear Fit for the Production Data

Since these choices of parameters do not fit the production data very well, we decided to fit the
parameters to the production data instead of the cumulative data, and then compare these results
to those previously found. Using the model defined by Eqs. 14, 15 and 16, and using Maple’s
Nonlinear Fit command, the following parameters were determined to be the best fit: Qmax∞ =
5169.805767754234, r̂ = 0.02895916368539971, b = 1.635853154191023, r = 0.2597530951305678
and C = 0.00002360557342466189.

These parameters fit the production data very well, but they do not fit the cumulative or reserve
data. However, a simple shift downwards of 315 Gbbl for the cumulative function, and a shift of 315
Gbbl upwards for the reserve data produces a very good fit. The arbitrary constant can be explained
by a constant of integration. Figures 20 and 21 show the adjusted cumulative and reserve graphs as
well as the production graph, obtained by adding a constant of -315 Gbbl in the cumulative function.

(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 20: Cumulative and Modified Reserves

So far, data from 1980 onwards has been used. There is a decrease in production in the early
1980s which causes the model to peak previously to 1980, as can be seen in figure 21. However, this
is one of the problems with this model. It fits the data very well, but the large peak before 1980
does not fit the data. When considering the 1965 onwards data as in figure 1b, there is a peak in
oil production in 1979 when production reached approximately 24 Gbbl/year, but this is not nearly
as large as the peak in our model of about 37 Gbbl/year. We therefore considered 1965 onwards
production data to see if this would produce better results.

5.7 1970s Energy Crisis and 1980s Oil Glut

When analyzing the production data, an unusual pattern is observed in the 1970s and 1980s. To-
tal production increases rapidly until 1979, after which it decreases until 1983, is almost stagnant
during the next two years, then appears to start a progressive increase that we classify as normal.
When inquiring into this matter, we believe that it can be explained by the 1970s energy crisis and
the 1980s oil glut that drastically affected oil prices and production in the world. Figure 22 shows
the 1965-2016 production data by region. From this graph, we concluded that the abnormal peak
in production in the late 1970s was greatly due to changes in the Middle East’s production since
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Figure 21: Production data (black) and function with respect to time

the other regions do not appear to follow as abnormal paths as the Middle East.

Figure 22: 1965-2016 Production Data by Region

The Organization of the Petroleum Exporting Countries (OPEC) was founded in September
1960 by Iran, Iraq, Kuwait, Saudi Arabia and Venezuela [12]. At the time, the “Seven Sisters” were
largely controlling the global oil market [12]. In 1968, the “Declaratory Statement of Petroleum
Policy in Member Countries“ came into effect, which “emphasised the inalienable right of all coun-
tries to exercise permanent sovereignty over their natural resources in the interest of their national
development” [12]. During the next decade, OPEC became more powerful and influential on in-
ternational oil markets, due in part to their rapid increase in production. On October 6th, 1973,
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Egypt launched its attacks on Israel and the Yom Kippur War began, the “fourth of the Arab-Israeli
wars”, that would continue for the next 20 days [10, p. 223]. After the United States and other
countries showed support to Israel, the Arab countries of the Organization of the Petroleum Ex-
porting Countries (OPEC) imposed an embargo that started with a five percent cut of oil exports
and a doubling of the price, but later developed into a complete embargo. “Clearly, oil was being
used as a weapon of political pressure, and very successfully.”[2, p. 42] “U.S. imports of oil dropped
from 1.2 million barrels to 19,000 barrels per day.” [2, p. 18] The United States attempted to keep
up with demand through its own production of oil, but was unable to do so. Many countries im-
posed energy-saving restrictions such as lower speed limits and even “car-free Sundays” in Europe
[2, p. 42], and alternative energy sources were starting to be considered with more seriousness. In
the early 1970s, oil prices had started to rise, and the price (in US dollars of the day per barrel)
jumped from $3.29 in 1973 to $11.58 in 1974 [13]. The embargo ended in March of 1974, but prices
were still high [10, p. 228]. However, the times of trouble of the oil industry were not over. In 1979,
another oil crisis developed with the Iranian Revolution due to disturbances in Iran’s oil production
[10, p. 236-237]. Oil prices (in US dollars of the day per barrel) went from $14.02 in 1978 to $31.61
in 1979 [13]. Consumption decreased with the increase in price which then led to a surplus of oil
supplies. By 1986, the cost of a barrel of oil in US dollars of the day was back down to $14.43. In
the 1980s, OPEC members finally agreed to follow quotas and limit their production, hence helping
to stabilize oil production.

This short summary of the historical events that greatly impacted the production of oil in the
1970s and 1980s leads us to consider these years as having abnormal production data, and for us
to construct a model that will not necessarily agree with the data during this time period.

5.8 Production Data Modifications

Instead of considering our model to be wrong, perhaps it is the data that is actually misleading
since major historical events are not included in our model. Our proved reserves data only begins
in 1980, but the BP Statistical Review of World Energy has production data from 1965 onwards.
We had previously only been using 1980 onwards data, but we thought that the previous 15 years
might help Maple to get a better nonlinear fit for the production. However, doing so did not re-
ally change the values of the parameters obtained. Then, for reasons explained in the historical
section, we decided to analyze our model and nonlinear fit without putting a lot of importance on
the fit in the 1970s and 1980s, and putting more importance into a good fit for the second half of
the data. With this in mind, and using the same modified Hubbert model with varying carrying
capacity, the following parameters were obtained to be maximal. Note that the parameters that
were previously found were used as starting points and the modified reserve data points were gen-
erated using the appropriate ultimate reserves. Figures 23 and 24 show the data and the nonlinear
model. The arbitrary constant added to the cumulative function was -310 Gbbl this time and
the best parameters were found to be: Qmax∞ = 5169.805767754234, r̂ = 0.02895916368539971,
b = 1.635853154191023, r = 0.2597530951305678 and C = 0.

The cumulative and reserve data fit extremely well, and the production data fits fairly well for
the second half of the data, which is, in our opinion, the most valid data. Since the integration
constant C is zero, the curve does not peak before 1980 as was the case previously. This makes
sense to us since we expect that production would have increased gradually from the time that
oil started to be pumped. According to this model, peak production occurs at time t = 75.57,
with time t = 1 being 1965. Therefore, peak production is predicted to occur just after half way
through 2039, and production is predicted to be approximately 37.42831 Gbbl at that time. Note
that production in 2016 was 33.63475 Gbbl, so according to this model, maximum production will
only be about 3.79 Gbbl/year more than current production. Since our models are logistic curves,
production and reserve will never reach their limit value of zero. For a reference point though,
production will be down to 3 Gbbl/year by 2174.

Something else that we considered was to approximate the data from 1969 to 1982 instead
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(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 23: Cumulative and Modified Reserves

Figure 24: Production data (black) and function with respect to time

of removing it for the nonlinear fit. We started with a linear approximation (as shown in fig-
ure 25a, and then we used a quadratic approximation, presented in figure 25b. In other words,
we fit a quadratic function to the production data without the 1969-1982 data points, and then
replaced this data by points on the parabola. In doing so, we were then able to use Maple’s
nonlinear fit to find optimal values for all of the parameters. This set of parameters fits the
modified production data fairly well and it fits the reserve and cumulative data very well, even
though the nonlinear fit was to the production data. An arbitrary constant of −335 was added
to the cumulative function to produce the graphs shown in figures 26 and 27, with the following
parameters: Qmax∞ = 5121.774404844959, r̂ = 0.02852232391417219, b = 1.997507796623311,
r = 0.2246625827308103 and C = −0.00004824093352972945. Note that the modified reserve data
points were created using this Qmax∞ and not the initial value of about 5069 Gbbl.
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(a) Modified production data using a linear approxi-
mation for the 1969-1982 data

(b) Modified production data using a quadratic ap-
proximation for the 1969-1982 data

Figure 25: 1969-1982 Production Data Approximations

(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 26: Cumulative and Modified Reserves

This model predicts peak production to occur at approximately t = 74.8 which corresponds to
around the end of 2038. At that time, production is expected to be about 36.52 Gbbl/year, which
is about 2.89 Gbbl/year more than what was produced in 2016.

Since Maple’s Nonlinear Fit was limiting the number of major iterations, we manually imposed
the maximum number of iterations to be 1319, above which Maple would not produce results since
the object was too large. Taking the results that are produced from the largest number of iterations
to be the most accurate results, here are the optimal parameters as well as their graphs in figures
28 and 29. Qmax∞ = 5255.928050886900, r̂ = 0.02805196169698855, b = 1.991200028978748,
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Figure 27: Modified production data (black) and function with respect to time

r = 0.2093228582783033 and C = −0.00005110988626128131.

(a) Cumulative data (black) and function with respect
to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 28: Cumulative and Modified Reserves with 1319 iterations

These parameters produce very similar results to those presented in figures 26 and 27. Peak
production occurs at around t = 76.11, or at the beginning of the year 2040, and production at
that time is expected to be approximately 36.86 Gbbl/year. That is about 3.23 Gbbl more than
current production. Qmax∞ is about 5256 Gbbl, which is slightly larger than what was found in
section 5.2.1 with the nonlinear fit to the Qmax points, but only by less than 200 Gbbl.

We consider these last results to be the most accurate model presented in this paper. We will
therefore present an analysis of the error associated with this model. We wish to quantify the
estimation error between the actual data points (or modified data points in some cases) and the
model’s predicted values. We calculated the sum of squared error (SSE), the mean squared error
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Figure 29: Modified production data (black) and function with respect to time, with 1319 iterations

Figure 30: SSE, MSE and RMSE Error Estimates

(MSE) and the root-mean-squared error (RMSE) for all three quantities, cumulative, modified
reserves and production, and they are presented in figure 30. It makes sense that the error for the
cumulative and the modified reserves is the same since the modified reserves data is simply a mirror
image of the cumulative data. These quantities were calculated as shown in Eqs. 17, 18 and 19,
where Yi is the data point and y(i) is the function evaluated at time t = i. There are 37 data points
for cumulative and modified reserves whereas n = 52 for production.

SSE =

n∑
i=1

(Yi − y(i))2 (17)

MSE =
SSE

n
=

∑n
i=1(Yi − y(i))2

n
(18)

RMSE =
√

MSE =

√∑n
i=1(Yi − y(i))2

n
(19)

We also considered the mean absolute error (MAE). As its name indicates, the MAE calculates
the average distance from the data point to the predicted value of the function. It was calculated as
shown in Eq. 20 and figure 31 presents the error estimates for the three functions. This error esti-
mate as well as the MSE were calculated in order to give an idea of the magnitude of the error, but
since they are both scale-dependent, they cannot be compared with the error of other quantities [7].

MAE =

∑n
i=1 |Yi − y(i)|

n
(20)
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Figure 31: MAE Error Estimates

Figure 32: 1966-2016 Cumulative Production

Since Gallagher [4] also provides cumulative production data from 1966 to be 185.226 Gbbl, we
decided to see if our model fits the previous cumulative data. When doing so, we found that our
model predicts higher cumulative from 1966 to 1979 than the actual data points indicate. Figure
32 presents these results with the data points and the model. Time t = 1 corresponds to 1965.
However, there is no drastic deviation from the model; it gradually leaves the curve. Also, we con-
sider the more recent data to be the most accurate, so we will not consider this deviation from the
model to be a major drawback, especially seeing as the model was not created with this earlier data.

That being said, we considered fitting the model to this extended set of cumulative data, and
we used Maple’s Nonlinear Fit to determine the best parameters for the cumulative data. We were
obliged to impose one of the parameters and only leave four free, so we chose to set the ultimate re-
serves to be about 5170 Gbbl. We considered this parameter to be the one which was the best known
based on our previous models. Doing so produced very good fits for the cumulative and modified
reserves data, but a less good fit for production, as shown in figures 33 and 34. These parame-
ters fit the second half of the production data fairly well though, and it vaguely approximates the
production data during the unusual peak around 1979. However, it consistently overestimates the
data from 1965-1972. According to this model, peak production will occur around t = 81.153075,
during the year 2045. This is five years later than our previous prediction, but it is still around
the same time frame. However, peak production is expected to be approximately 42.58 Gbbl/year,
which is more than 5 Gbbl/year larger than our previous model. This model therefore predicts that
production will increase by nearly 9 Gbbl from now until peak production in 29 years, which is a
lot more than the 3.23 Gbbl increase in the previous model. From 1988 to 2016 (also a 29-year
time period), production increased by 10.6 Gbbl. One might expect a similar increase during the
next 29 years as well, or production increases might diminish while approaching peak oil and the
3.23 Gbbl increase might be plausible.

We then calculated the error associated with this model in order to compare it to the previous

28



(a) Extended cumulative data (green) and function
with respect to time

(b) Modified Reserve data (blue) and function with
respect to time

Figure 33: Extended Cumulative and Modified Reserves

Figure 34: Production data (black) and function with respect to time

model’s error. Since this model was obtained from a fit to the cumulative data instead of the
production data, we expect the cumulative and modified reserves to have a smaller error whereas
production would have a larger error than the previous model. Also, we now have more cumulative
data points than modified reserves, so the error estimates of these quantitiese will no longer be the
same. Figure 35 presents the SSE, MSE and RMSE error estimates.

We also calculated the MAE for the cumulative, modified reserves and production models.
Figure 36 presents these error estimates. As was the case with the SSE, MSE and RMSE error
estimates, the MAE for the cumulative and the modified reserves decreased whereas it more than
tripled for production. In general, with the model for the extended cumulative data, the error
increased proportionally more for production than it decreased for the other quantities, so we will
consider our other model with 1319 iterations to be the best fit.
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Figure 35: SSE, MSE and RMSE Error Estimates

Figure 36: MAE Error Estimates

One might think that the increase in the production error is only due to the earlier data. Al-
though it is true that the model deviates the most from the data in the earlier half of the data,
the latter part of the data also has an increased error. Taking into account only the data from
1983 to 2016 and ignoring the earlier data, the RMSE goes from 0.466 for the production fit with
1319 iterations to 0.799 for the extended cumulative fit; hence, there is still an increased error for
the later data as well. Also, we used the modified production data for the production fit model,
and we replaced some of the data by points with no noise, hence reducing the error quite a bit. In
fact, for the data from 1969 to 1982 that we replaced with a quadratic approximation, the MAE is
0.11 whereas it is 1.14 for the same time period in the extended cumulative model with the original
production data. Also, the extended cumulative fit with the quadratic approximation data has a
MAE of 3.56 from 1969 to 1982 and a MAE of 1.63 from 1965 to 2016, which is why we chose to
use the original production data in that model.

Since production data and reserves data have a large range of values (different orders of mag-
nitude) we also considered the mean absolute percentage deviation MAPD, or mean absolute per-
centage error MAPE which is a scale-independent error estimate (see Eq. 21). The production fit
with 1319 iterations has a MAPD of 1.35 whereas the extended cumulative fit with the original
production data has a MAPD of 5.07, more than three times larger than the production fit error.
This also contributes to justifying our choice of the production fit model. However, we must keep in
mind that we are using modified reserves and production data instead of our original data. More-
over, the MAPD has a few drawbacks. The first is that it becomes undefined if there is a zero data
point. That being said, no such data points are in our data set, so this should not be an issue.
Hyndman adds that another problem with the MAPD is that it “puts a heavier penalty on positive
errors than on negative errors” [7, p. 45].

MAPD =
100

n

n∑
i=1

∣∣∣∣Yi − y(i)

Yi

∣∣∣∣ (21)

We also considered the mean absolute scaled error (MASE), a more recent error estimate by
Hyndman and Koehler (2006) [7] calculated as shown in Eq. 22. This error estimate has the
advantage that it avoids some of the issues of other error estimates. It is scale-independent and
it is not affected by zero values. In fact, the only situation where the MASE would encounter a
problem is if all data points were the same value [7, p. 46]. The 1319 iteration production fit has a
MASE of 0.63197 whereas the extended cumulative fit has a MASE of 1.47870, more than double
the production fit error. Hyndman claims that MASE values are usually smaller than one [7, p. 46].
This again supports our choice of the 1319 iteration production fit as being the better model.
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MASE =

∑n
i=1 |ei|

n
n−1

∑n
i=2 |Yi − Yi−1|

(22)

5.9 Comparisons with Other Models

Now that we have our results, we can compare them to other predictions presented in the littera-
ture. Gallagher presents the year 2014 as an average of 12 previously published peak oil predictions
and 2011 as the median year [4, p. 790]. This author also presents his results of peak production
occuring in 2009 with production being 30.16 Gbbl in that year and the URR being 2240 Gbbl [4,
p. 800]. That being said, this paper was published six years ago in 2011, and production data since
2009 does not indicate that peak oil has occurred yet. Another topic that Gallagher discusses is
an asymmetrical model that would have a sharper decline than incline. This is also suggested by
Berg and Korte [1, p. 228] and it could be due to developing technologies that greatly increased
production before peak oil that would then lead to a lack of resources after peak production [4,
p.700-791]. This is something that we could further consider. Our models have been constructed
based on the data leading up to peak production and have looked only a little at what path pro-
duction would follow after peak oil. Gallagher’s results differ from ours quite significantly. The
URR is less than half of our value for the reserves, and our peak oil prediction is more than 30
years later. Furthermore, Maggio and Cacciola [11] also presented different results than what we
obtained. According to their predictions, peak oil would occur somewhere between 2009 and 2021
with production peaking between 29.2 and 31.6 Gbbl/year. We have already surpassed these pro-
duction levels with production reaching 33.6 Gbbl in 2016. Their estimate for the URR is between
2250 and 3000 Gbbl. These results were published in 2012 and are very similar to Gallagher’s re-
sults, but they have a larger range for the occurence of peak oil. Thus, peak oil could still possibly
occur in this time period if production were to peak within the next five years. Finally, Berg and
Korte [1] present peak oil predictions to be from 2005 to the 2030s, which is also sooner than our
predictions.

6 Conclusion

Our models all predict different occurences of peak oil production, but many suggest that it will
occur in the not-too-distant future. The path that the phase plane of oil reserves vs production will
follow is hard to predict though. Some models predict a hard landing, others show us heading off to
a fixed point and many predict a looping behaviour. The many unknowns, political, economical and
environmental just to name a few, make oil production a difficult topic to model. Our models have
included several parameters in hopes of encompassing various social and environmental influences,
but they are in no way comprehensive. That being said, based on our models, we predict peak oil
to occur somewhere around 2040, and for production to be approximately 36.86 Gbbl/year at that
time. Based on this model, production and reserves will gradually decrease without ever running
out of oil, thus creating a happy ending to the age of oil.
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