FINAL EXAM APRIL 17, 2009

STUDENT'S NAME:	ID #:
-----------------	-------

Note: You must show your work in order to receive full marks.

No electronic devices are allowed.

1. Vector Calculus

(8)

(2)

(10)

- (10) (a) Show that $\overrightarrow{F}(x,y) = \langle e^x \sin y, e^x \cos y + \sin y \rangle$ is conservative and find a function ϕ such that $\overrightarrow{F} = \nabla \phi$. Use ϕ to evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where C is the arc of an ellipse going from (0,0) to $(-1,\frac{\pi}{4})$.
- (10) (b) Use Green's Theorem to find $\oint_C (y^3 dx x^3 dy)$ where C is the circle $x^2 + y^2 = 4$ travelled counterclockwise.
 - (c) For this question, let $\overrightarrow{F} = \langle x^2yz, xy^2z, xyz^2 \rangle$.
 - i. Find the divergence and curl of \overrightarrow{F} .
 - ii. Is it possible to express \overrightarrow{F} of part (i) as the gradient of a function f?
 - (d) For this question, set-up, but do not evaluate the integrals.
 - (5) i. Use Stokes' Theorem to write $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$ as a double integral, where $\overrightarrow{F} = \langle 3, z^2, yz \rangle = 3\overrightarrow{i} + z^2\overrightarrow{j} + yz\overrightarrow{k}$ and C is the boundary of the paraboloid $y = 4 x^2 z^2$ in the first octant travelled clockwise as viewed from the origin.
 - (5) ii. Use the Divergence Theorem to write the flux of $\overrightarrow{F} = 2x^3z \overrightarrow{i} + 2y^3z \overrightarrow{j} + 3z^2 \overrightarrow{k}$ across the sphere $x^2 + y^2 + z^2 = 4$, oriented outward, as a triple integral.

2. Differential Equations

- (a) Find the general solution of the following differential equations using the specified method:
 - i. $y'' y' = e^x \cos x$ (variation of parameters)
- (10) ii. $y'' 3y' + 2y = e^{2x}$ (undetermined coefficients)

3. Sequences and Series

- (a) Test the following series for convergence or divergence:
- (5) i. $\sum_{k=2}^{\infty} \frac{\ln k}{k^2}$
- (5) ii. $\sum_{n=1}^{\infty} \frac{n^n}{2^{2n+1}}$
- (5) $iii. \sum_{i=1}^{\infty} \frac{e^{\frac{1}{i}}}{i^2 + i}$
- (5) (b) Determine, with justification, whether the following series is absolutely convergent, conditionally convergent or divergent: $\sum_{n=0}^{\infty} \frac{(-1)^n}{3n-2}$
 - (c) Let $f(x) = \sum_{n=0}^{\infty} (n+1) \frac{x^n}{3^n}$.
- (5) i. Find the radius of convergence for f
- (10) ii. Find a series for $\int f(x) dx$ and a formula for its sum. (Hint: geometric series)
- (5) iii. Find a formula for f(x). (Hint: f(x) is the derivative of $\int f(x) dx$)