FINAL EXAM APRIL 20, 2009

Note: You must show your work in order to receive full marks. No electronic devices are allowed.

- 1. (10 points) Show that $\overrightarrow{F}(x,y,z) = \langle 2xy + 2xz + y^2 z^2, 2xy 2yz + x^2 z^2, -2xz 2yz + x^2 y^2 \rangle$ is conservative and find a function ϕ such that $\overrightarrow{F} = \nabla \phi$. Use ϕ to evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where C is the arc of a helix going from (1,1,0) to $(-1,-1,\pi)$.
- 2. (10 points) Use Green's Theorem to find $\oint_C xy^2 dx yx^2 dy$ where C is the perimeter of the triangle with vertices (1,1),(4,1) and (4,3), travelled in a clockwise direction.
- 3. (10 points) Evaluate: $\iint_S \vec{F} \cdot d\vec{S}, \text{ where } \vec{F} = \frac{x}{x^2 + y^2} \vec{i} + \frac{y}{x^2 + y^2} \vec{j} + \frac{z}{x^2 + y^2} \vec{k} \text{ and } S \text{ is the surface given by } \vec{r}(u,v) = \langle u \cos v, u \sin v, v \rangle, \text{ for } 1 \leq u \leq 2 \text{ and } 0 \leq v \leq \pi, \text{ with an upward orientation.}$
- 4. For this question, let \vec{F} be a vector field whose components have continuous partial derivatives of all orders in an open region (with no holes) that contains the smooth closed surface S which is given a positive (outward) orientation.
 - (a) (6 points) Would you use Stoke's Theorem or the Divergence Theorem to simplify $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$? Explain.
 - (b) (4 points) Using your choice above, evaluate $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$.
- 5. (10 points) Find the solution of the following differential equations using the method of your choice: $y'' 4y' + 4y = e^{2x}$ with initial conditions y(0) = 1, y'(0) = 0.
- 6. (10 points) Use power series to solve: y'' + 2xy' + y = 0.
- 7. (15 points) Determine, with justification, the convergence or divergence of the following series:
 - (a) $\sum_{n=1}^{\infty} n^{-1-n}$
 - (b) $\sum_{n=1}^{\infty} \frac{4^n}{(3n)^n}$
 - (c) $\sum_{n=1}^{\infty} \frac{n2^{n-1}}{3^{n+1}}$
- 8. (5 points) Determine, with justification, whether the following series is absolutely convergent, conditionally convergent or divergent: $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$
- 9. (10 points) Find the Taylor series for $f(x) = \frac{1}{\sqrt{2x}}$ centered at x = 2. Find the radius of convergence.
- 10. (10 points) Using the " ϵ -N" definition of convergence, prove that if $\{a_n\}_{n=1}^{\infty}$ converges to 0 and $\{b_n\}_{n=1}^{\infty}$ is bounded, then $\{a_nb_n\}_{n=1}^{\infty}$ converges to 0.