MATH 3073 FINAL EXAM, APRIL 15, 2010

(10) 1. Solve for u(x, y):

$$x^{2}u_{x} + yu_{y} + (x^{2}\ln y)u = x^{3}$$

- 2. Consider the following PDE: $u_{xx} + 4u_{xy} + 3u_{yy} = 0$, $x, y \in \mathbb{R}$.
- (1) (a) Classify as elliptic, parabolic, or hyperbolic.
- (3) (b) Write the PDE in standard form. (Hint: complete the square for the differential operator).
- (6) (c) Solve the PDE with initial conditions: u(0,y) = 2y and $u_x(0,y) = 6y^2$.
- (10) 3. Solve:

$$u_t = 2u_{xx}, \qquad 0 < x < \pi, \quad 0 < t < \infty$$

$$u_x(0,t) = u_x(\pi,t) = 0$$

$$u(x,0) = \sin x \qquad 0 < x < \pi$$

- (10) 4. Solve $\Delta u = 0$ on the wedge $x^2 + y^2 < a^2$, 0 < y < x with the following boundary conditions: $u_{\theta} = 0$ on $\theta = 0$, $u_{\theta} = 0$ on $\theta = \pi/4$, and $u_r = \theta$ on r = a. (You may assume that all eigenvalues are real and non-negative).
- (10) 5. Show that the Green's function for the operator $-\Delta$ on the domain D at the point $x_0 \in D$ is unique.

Helpful formulae:

$$\int \sin x \sin \beta x dx = \frac{\sin((1-\beta)x)}{2(1-\beta)} - \frac{\sin((1+\beta)x)}{2(1+\beta)} + C$$

$$\int \sin x \cos \beta x dx = -\frac{\cos((1-\beta)x)}{2(1-\beta)} - \frac{\cos((1+\beta)x)}{2(1+\beta)} + C$$

$$\int x \sin(\beta x) dx = \frac{\sin(\beta x) - \beta x \cos(\beta x)}{\beta^2} + C$$

$$\int x \cos(\beta x) dx = \frac{\cos(\beta x) + \beta x \sin(\beta x)}{\beta^2} + C$$